



Queensland University of Technology Brisbane Australia

## Maximising the probability of detection in heterogeneous grain bulks

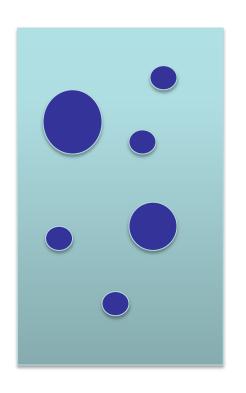


## Sampling basis for management

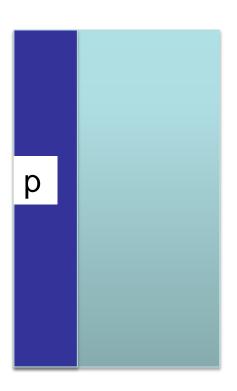
Aim: detect insects in grain bulk with known probability

Much (very good work) already done




- Estimate number of samples to take based on a sampling model
- All models are wrong, some are useful
  - Fit for the purpose-incorporate along supply chain
  - Model complexity (number of parameters)




- Need meaningful aspects of organism's ecology
- Most currently in use based on a Binomial
- Assumption homogeneous distribution of critters

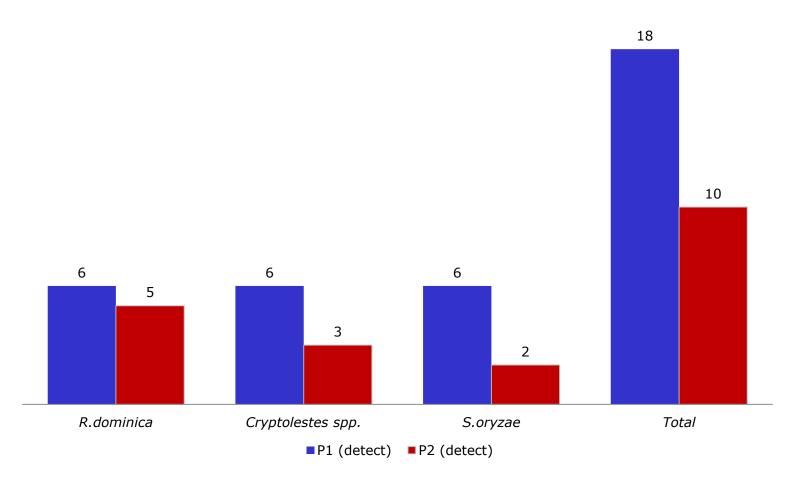


## **Alternative**




λ number/kg infested portion




$$P ext{ (detection)} = 1 - (1 - p + pe^{-w\lambda})^n$$







|                     | Probability  | Prediction       | Silo 1    |   | S      | Silo 2    |  | Prediction  | Silo 1    |   | Silo 2    |   |  |
|---------------------|--------------|------------------|-----------|---|--------|-----------|--|-------------|-----------|---|-----------|---|--|
|                     | of Detection | <u>P(A&gt;0)</u> | Successes |   | es Suc | Successes |  | <u>P(ψ)</u> | Successes |   | Successes |   |  |
|                     | (%)          |                  |           |   |        |           |  |             |           | 1 | Г         |   |  |
| <u>R. dominica</u>  | 95           | 3                |           | 3 |        | 3         |  | 1           | 2         |   | П         | 3 |  |
|                     | 85           | 2                |           | 3 |        | 3         |  | 1           | 2         | ı | - 1       | 3 |  |
|                     | 75           | 1                |           | 3 |        | 3         |  | 1           | 2         |   |           | 3 |  |
| <u>Cryptolestes</u> | 95           | 5                |           | 3 |        | 3         |  | 1           | 1         |   |           | 2 |  |
| <u>Spp.</u>         | 85           | 3                |           | 3 |        | 3         |  | 1           | 1         | ı | - 1       | 2 |  |
|                     | 75           | 2                |           | 3 |        | 3         |  | 1           | 1         |   |           | 2 |  |
| <u>S. oryzae</u>    | 95           | 13               |           | 3 |        | 3         |  | 1           | 2         |   | П         | 0 |  |
|                     | 85           | 9                |           | 2 |        | 2         |  | 1           | 2         |   | - 1       | 0 |  |
|                     | 75           | 6                |           | 2 |        | 1         |  | 1           | 2         |   |           | 0 |  |





 Homogeneity - efficiency of sampling programs relate to proportion of grain bulk sampled

- Heterogeneity number of subsamples very important
  - probability of intersecting infested portion



- NOT the first time heterogeneity been considered
- Simple, generic model
  - applied at farm level, trucks, bulk storages
  - minimum number of parameters to estimate
  - Integration along supply chain?



 Improving detection probabilities for pests in stored grains. (in press)
Elmouttie, Kiermeier, Hamilton. Pest Management Science





- Omniscience=collaboration?
- Ecology, simulation modelling, statistics (no physics, sorry...)



$$P(A = a \mid X = x) = \frac{e^{-xw\lambda}(xw\lambda)^a}{a!}$$

