

Queensland University of Technology Brisbane Australia

Estimating the probability of detection under cryptic heterogeneity

Dr. David Elmouttie & Dr Grant Hamilton

Cooperative Research Centre for National Plant Biosecurity

Probability of detection

- Essential to the study of Ecology
 - What is present
 - How many are present
 - Management
 - EIS

Detectability

 <u>Everything</u> has a detection probability

 Detection probabilities for flora and fauna are often < 1

MacKenzie et al. (2002), Wintle et al. (2004)

Probability of Detection

Bernoulli or Binomial distribution

 $D = 1 - (1 - d)^{v}$

Wintle et al. 2005

- v = number of visits/samples
- d = single visit detectability

Heterogeneity and detection

- Although single visit detectability is considered, models do not consider heterogeneity
- Consideration of spatial scale
 - Landscape
 - Local area or habitat patch
 - Confined area *i.e.* grain silo

Heterogeneity and detection

- Irrespective of spatial scale species detection will be influenced by:-
 - Proportion of site/habitat utilised
 - Density of individuals
 - Individual species detectability
 - Sampling intensity

Cryptic Heterogeneity

- It is often difficult to determine how heterogeneous an environment is
 - Species dependent
 - Temporal influence
 - Microclimatic factors

Elmouttie *et al.* 2010 *in press*

Considering heterogeneity

$$P1(d) = 1 - (1 - p + pe^{-\alpha\lambda d})^n$$

- *p* represents the proportion of the site utilised
- α represents the sub sample size (area)
- λ density of what is being sampled the populated portion of the site
- *d* single visit detectability
- *n* number of subsamples

Elmouttie et al. 2010 in press

Parameter estimates

- generating parameter estimates
 - p (heterogeneity)
 - λ (density)
 - d (detectability)

Here's the 5 day forecast. To be honest, after tomorrow, your guess is as good as mine!

Elmouttie et al. 2010 in press

Example – insects in grain

- Insect pest are major problem in stored grains
- Detection probabilities typically based on assumption of homogeneity
 - *i.e.* Love *et al.* 1983 $P2(d) = 1 (1 \theta)^{v}$

 θ = Sample fraction & v = number of insects

Elmouttie et al. 2010 in press

CRC PLANT biosecurity

Example - insects in grain

- Develop parameter estimates
 (p, λ)
 - Intensive sampling
 (25 x 3 samples drawn)

- Sitophilus oryzae, Rhyzopertha dominica, Cryptolestes spp.

Elmouttie et al. 2010 in press

Model Validation

- Use parameter estimates to populate both models (Homogeneous/ Heterogeneous)
 - (0.75,0.85,0.95)
 - Sample surrounding silo's
 - Replicated in each test silo

Elmouttie et al. 2010 in press

Results

Predictions of Two models. P1(d) – predictions assuming heterogeneity and P2(d) – prediction for model which does not consider heterogeneity

		<u>P1(d)</u>	<u>P2(d)</u>	
	Probability of	Model Prediction –	Model Prediction –	
	Detection(%)	Sampling intensity	Sampling intensity	
<u>R.</u> dominica	95	3	1	
<u>p = 0.61; λ = 13.1</u>	85	2	1	
	75	1	1	
<u>Cryptolestes</u> <u>Spp. p =</u>	95	5	1	
<u>0.5; λ = 17.4</u>	85	3	1	
	75	2	1	
<u>S. oryzae p = 0.2; λ</u>	95	13	1	
<u>= 13.04</u>	85	9	1	
	75	6	1	

Elmouttie et al. 2010 in press

CRC PLANT biosecurity

■ P1 (detect) ■ P2 (detect)

ANTbiosecurity

Elmouttie et al. 2010 in press

Example – detectability < 1

- Two Australian tropical Rainforest plants
 - Acronychia acidula, Acronychia vestita
 - Patchily distributed
 - Not in equal densities
 - Can be difficult to identify

Parameter Estimation

- *p* & λ estimated from single rainforest site
- d estimated from proportion of A.vestita
 A.acidula and expert opinion
- Paramaters used to populate model for two detection probabilities (0.85,0.95)

Parameter estimates

- p = 56% of sample units
- λ = mean density of 1.1 individuals per sample unit
- d = 0.16 'real ratio'
 = 0.2 expert opinion

Results

Detection success (15 replicate trials) for *Acronychia vestita* under intensity (n), predicted when species detectability is incorporated and when it is not.

P1(d)	n d= 0.16	S1	S2	n d= 0.2	S1	S2	n <i>d</i> =1	S1	S2
85	20	15	13	17	13	12	4	3	0
95	32	15	15	28	15	13	7	6	3

Discussion

- Considering species distribution improves detection probability estimates
- Misidentification needs to be considered
- Expert opinion can provide robust estimates for certain model parameters

Thank you

For more information, please email

David Elmouttie -<u>d.elmouttie@qut.edu.au</u> Or Grant Hamilton -<u>g.hamilton@qut.edu.au</u>

