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1. Introduction 

Recent research and development of decision-support tools to help 
biosecurity decision makers to make complex investment decisions has 

relied on the use of Monte Carlo simulation models together with group-
based multi-criteria decision analysis (MCDA) (Cook and Proctor, 2007; 
Cook et al., 2009a; Cook et al., 2009b; Cook et al., 2010; Hurley et al., in 

press; Liu et al., in press).  One of the strengths of the MCDA approach is 
the transparent communication of uncertainty to decision-making juries 

through figures and statistics1.  This is important when, as is often the 
case in invasive species response policy, decisions are characterised by 
profound scientific uncertainty and even ignorance about the behaviour of 

invasive species in environments where they have not been previously 
observed.  In addition to scientific uncertainties, there can also be a great 

deal of strategic and political uncertainty surrounding risk management 
decisions.  The MDCA approach put forward in Cook et al. (2009a) and 
Cook et al. (2010) has sufficient flexibility to deal with the changing 

context of decisions, allowing scientific, economic and social analysts to 
tailor information to the circumstances of a risk management decision.  It 

can be used to prioritise species by industry or region; to prioritise risk 
mitigating investments (such as species specific R&D projects or 
integrated pest management activities); or to determine appropriate 

management strategies post-invasion (i.e. benefit cost analysis or cost 
effectiveness analyses). 

As effective as MCDA approaches are as transfer vehicles for complex 
invasive species information, to date they have been limited to non-spatial 

decision contexts due to a lack of specificity in Monte Carlo simulation 
models.  Where host environments are largely homogenous this does not 
pose a problem, but in agriculturally and environmentally diverse regions 

the spatial characteristics of invasive species impacts can be highly varied, 
and important in a risk management context.  This is particularly true 

when considering the intertemporal effects of invasive species across 
different landscapes.  Improving the spatio-temporal element of MCDA 
techniques used in biosecurity can be achieved through the use of maps 

to communicate information, in addition to traditional statistical indicators.  
These may be used as both output devices to express predictions and 

uncertainties, as well as input devices to capture scientific expert 
judgement in cases of high uncertainty about a species and its 
relationship with a host. 

When an event occurs in the “here and now” decision-makers tend to 
have a lot of information about it, and therefore think of it in concrete, 

low-level (i.e. intricate detail) terms.  But, when an event like a pest 
incursion is further removed from direct experience (i.e. is more distant 
into the future), decision makers have less available and reliable 

information about it, leading to the formation of a more abstract and 
schematic representation of the event (Trope et al., 2007).  Moreover, 

words and statistics carry the essence of the referent event, whereas 

                                       

1 For a thorough review of MCDA methods see Cook et al. (2010). 
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pictures are concrete representations that carry the properties of an 
invasion event in full detail (Liberman and Trope, 1998; Liberman et al., 

2002).  Therefore, when a decision-making group is psychologically „near‟ 
to an event, pictorial representations of it are more effective decision aids 

than words and statistics (Förster et al., 2004). 

In this paper we review the use of visual devices in group-based, 
interactive decision making settings and suggest tools and methods that 

can be used to maximise the effectiveness of visual inputs in to MDCA.  
We look at different applications from the literature, although we 

concentrate mainly on the invasive species literature.  We draw out 
features and techniques that can improve visual information quality 
received by decision-making groups with the aim of improving invasive 

species risk management decisions.  In structuring the review, we cite 
several of the recommendations put forward in Hirzel and Le Lay (2008) 

for the production of meaningful species habitat suitability maps, and 
expand them to provide insights into the effective use of maps in group-
based MCDA offering support and examples from the literature along the 

way. 

2. Predictive model scale selection  

2.1. Population models 

In the context of invasive species, projecting the potential spread and 
impact of newly-introduced species requires the use of a population 

spread model.  Since the seminal work of Fisher (1937) and Skellam 
(1951) ongoing attention has been devoted to the development of species 
spread models in ecology as a means of either understanding how 

organisms spread, developing new modelling techniques or predicting 
their spread rates (reviewed in Higgins and Richardson, 1996; Hastings et 

al., 2005).  This form of modelling has also identified the role of different 
spread pathways (Robinet et al., 2009) and valued the adoption of a 
strategic control zone to slow the spread of IAS (Sharov and Liebhold, 

1998; Sharov, 2004; Buckley et al., 2005). 

Given this substantial body of work exists, it is somewhat surprising that 
there appear to be relatively few attempts to build spread models with a 

view to more effective management of invasive species at a regional scale 
(but see Higgins et al., 2000; Buckley et al., 2005; Fox et al., 2009).  This 
may be due to several persistent problems plaguing dynamic spread 

modelling.  Firstly, there is a propensity for spread models to occupy 
inevitably all of the available habitat space.  This results from the 

exponential process that spread models attempt to represent, the 
reproduction and dispersal of a population distribution within a finite 

environmental resource, in this case space.  In addition, the outcome of 
each temporal step results in repeating divergence between replications.  
That is, the species distribution at a particular timestep is based on the 

stochastic events of every previous timestep.  A third problem concerns 
the lack of proper validation opportunities with which to engender 

confidence in the approach. 
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Since there is scarce literature to draw from that explicitly sets out the 
process decision-makers should follow when attempting to use spatio-

temporal risk mapping tools, it is prudent to start with a few of the basic 
steps before moving into model design and use. 

2.2. Scale 

To maximise the effectiveness of maps or pictorial representation of 

invasive species risks, the first essential step is to use the correct spatial 
dimension (Pitt et al., 2009).  The economic, environmental and social 
risks posed by invasive species are complex with interactions at various 

scales due to different entry pathways, establishment and spread vectors 
(Yemshanov et al., 2009).  Indeed, Gibson and Austin (1996) assert that 

since they are so complex, deterministic models may be most appropriate 
for representing the spread of epidemics over large spatial scales. 

Predicting species abundance and distribution at coarser scales can be 
achieved through habitat suitability modelling.  Species niche models can 
and have been applied to assess species invasion risks (e.g. Sutherst and 

Maywald, 2005; Kriticos et al., 2007), and climate change impacts on 
species potential ranges (Stephens et al., 2007) (the latter being 

transferable in space or time (Randin et al., 2006))2.  Jarvis and Baker 
(2001), for example, use a process-based insect phenology model running 
at a daily time step for 30 years over 1km grid squares to predict the 

possible effects of the Colorado potato beetle in England and Wales.  
Sutherst et al. (2007) discuss sources of change in plant pest distributions 

over time under climate change scenarios, and likely effects over time. 

It is also possible to use species assemblage to infer likely future 
distributions of invasive species over large scales using self organising 

map analysis, which is a type of artificial neural network. This technique 
uses worldwide species associations to determine which species have the 

highest likelihood of establishing in a particular region (Worner and 
Gevrey, 2006; Paini et al., 2010).  Gevrey and Worner (2006) a worldwide 
species distribution data from CABI/EPPO (2003) to predict the likelihood 

of two pest species, the Mediterranean fruit fly (Ceratitis capitata) and 
gypsy moth (Lymantria dispar), becoming established in New Zealand in 

any given year.  It is important to note that self organising map analysis 
does not specifically map spread over time, but instead calculates the 
likelihood that a species will become established in a certain region given 

its presence or absence in comparable regions around the world. 

At finer scales (e.g. regional or sub-regional), species spread models 

which represent populations as collections of discrete individuals rather 
than as a continuum may be more appropriate than habitat suitability 
models or artificial neural network analysis.  At these more refined scales, 

stochastic spatio-temporal epidemiological models enable decision-makers 
to have the randomness inherent in real biological systems represented to 

                                       

2 At present, climate-based niche modelling techniques typically employ gridded 

climate datasets of moderate spatial resolution (0.5 degree), although biosecurity 

decision-makers continually seek greater spatial precision in the risk map 

products (Kriticos and Leriche, 2010). 
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them in model form3.  However, it should be borne in minds that the 
model design chosen by an analyst informing a risk management decision 

may be very influential on the choice made by decision makers.  For 
instance, control strategies can be highly sensitive to the particular form 

of stochastic model selected (Gibson and Austin, 1996). 

2.3. Explanatory variables 

Having identified an appropriate modelling scale or resolution to represent 
invasive species risks to a decision-making group, the particular 
geographical area to be considered by the group must be established.  

This may be a small sub-set of the area simulated by probability models, 
or it may involve the entire area.  In instances where the study area 

selection is simply dictated by the resource allocation decision that needs 
to be made, the choice of what area is considered is relatively 

straightforward.  Where this is not clear, expert testimony and 
stakeholder knowledge may be required to refine the appropriate or 
preferred area. 

Once the study area has been clearly identified, the relative abundance of 
available information on that area must be determined.  Guisan and 

Zimmerman (2000) outline four main sources of environmental 
information that ideal for the purpose of characterising the study area: 
(1). field surveys or observational studies; (2). printed or digitized maps; 

(3). remote sensing data (numerical aerial photographs and satellite 
images), and; (4) maps obtained from GIS-based modelling procedures.  

In relation to the management of species populations, delineation of the 
study area depends on the data sampling plan and whether difficult-to-
detect individuals or groups are present, be they newly established 

invasive pests, nearly eradicated pests, or displaced species. 

Venette et al. (2002) review the literature related to the detection of rare 

individuals in order to improve management.  They suggest that sampling 
for rare species should follow the biology of that particular organism but 
also the principles governing the power of a sampling strategy.  They 

recommend the use of the fundamentals of probability theory as a 
foundation for any sampling or monitoring program, with consideration of 

the level of inference that can be drawn from these samples, especially 
when resources are limited.  Specific approaches include binomial, beta-
binomial, and hypergeometric-based sampling strategies for quarantine 

inspections for exotic pests.   

Since, in most cases, resources devoted to surveys are small relative to 

the area possibly affected, there are methods that can be employed to 
maximise the value of the information available about the chosen study 
area.  For instance, Carpenter et al. (1993) predict bettong distributions 

                                       

3 The use of individual-based, spatio-temporal stochastic models is not new.  

Mollison (1977), for instance, uses models scaled at the level of the individual to 

predict the spatial spread of a population or epidemic.  In these models each 

population member produces offspring according to a Poisson process with the 

displacement between offspring and parent drawn from a probability distribution, 

known as the contact distribution. 
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using DOMAIN which is a range-standardized, point-to-point similarity 
metric that quantifies the similarity between two sites.  This method 

performs well using presence only data and is sufficiently flexible for use 
in sampling survey design, reserve selection and potential mapping of rare 

and common species.  Guisan and Zimmerman (2000) suggest the use of 
the Digital Elevation Model (DEM) in species distribution modelling and 
mapping as it spawns other environmental variables such as aslope and 

aspect4. 

However, climatic variables are also of central importance and constitute 

important information that must be garnered about a study area.  
Sutherst and Bourne (2009) find that regression models are unable to 
explain different seasonal patterns across latitudes and longitudes due to 

selective independent variables in their study context.  This variable 
selection issue can be partially overcome by using factors such as annual 

average temperatures and rainfall or moisture indices, but fall short in 
considering biologically relevant combinations of suitable temperature and 
moisture, extreme conditions of different durations or by using different 

modelling methods (Sutherst and Bourne, 2009).  Population distribution 
range densities are determined by many variables that interact in complex 

ways through space and time.  Recent studies have highlighted influences 
of heterogeneous temperature, population demographics, community 

interactions (e.g. keystone species), biogeographic differences and 
anthropogenic effects (Sagarin et al., 2006).  Jarvis and Baker (2001) 
focused on the assessment phase of pest risk analysis and in particular 

aspects relating to the likelihood of a pest becoming established in a 
country after arrival based on the host temperature during its 

developmental period. 

3. Comparison of modelling approaches to ensure 

relevant selection 

3.1. Deterministic models 

Invasive species distribution can be modelled using a large variety of 

deterministic methods.  Included in these methods are Generalized Linear 
Models (GLMs), ordination and classification methods, Bayesian models, 
locally weighted approaches (e.g.  GAM), environmental envelopes or 

even combinations of these models (Guisan and Zimmermann, 2000).  
Table 1 (p. 11), adapted from Guisan and Zimmermann (2000), provides 

a summary of these and other species distribution modelling methods.  
Barry and Elith (2006) suggest the use of flexible regression techniques 
such as BIOCLIM, Distance-based models, and various regression 

techniques.  Selection of an appropriate method should not depend solely 

                                       

4 In this paper, Guisan and Zimmerman (2000) clearly distinguish between spatial 

resolution and map accuracy.  Map accuracy can be tested by determining the 

errors of mapped entities or gradients.  For example, a DEM and its basic 

derivatives – slope, aspect, topographic position and curvature – may be the 

most accurate maps available, but will not necessarily have the highest predictive 

potential. 
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on statistical considerations but should also consider the shape and nature 
of the species‟ response.  Regression-based techniques such as GAM, 

Multivariate Adaptive Regression Splines (MARS), Boosted Regression 
Trees (BRTs) and maximum entropy modelling offer better performance 

than GLMs due to flexibility in response curves (Barry and Elith, 2006).  
One advantageous feature of more rarely used models such as BRT, 
Maximum Entropy (MAXENT), and MARS is that they all share a high level 

of flexibility in fitting complex responses (Elith et al., 2006). 

To better enable the use of historic and available occurrence data 

(presence data alone) Elith et al. (2006) compare 16 modelling methods 
over 226 species from 6 regions of the world.  Presence-only data is then 
used to fit models, and independent presence-absence data to evaluate 

the predictions.  They then make a comparison between common models 
such as GAMs, Genetic Algorithm for Rule Set Production (GARP) and 

BIOCLIM, and more rarely applied techniques such as BRT, MAXENT, GDM 
and MARS, to model species‟ distributions.  Interestingly, they find that 
the novel methods consistently outperform the more established methods. 

Leathwick et al. (2005) also incorporates MARS, a technique that uses 
piece-wise linear segments to describe non-linear relationships between 

species and environmental variables.  Analysis results are imported into a 
Geographic Information System.  Guisan and Harrell (2000) show how 

models based on ordinal data, which is common in ecology, perform just 
as well as logistic regression for presence/absence and abundance 
predictions for plants.  Models include the Proportional Odds, the 

Continuation Ratio and the Stereotype models.  Aspinall (1992) used a 
predictive spatial distribution model for deer in Scotland based on Bayes 

theorem.  The uniqueness of the papers‟ approach lies in the use of a 
combination of different data sets to predict a single data set.  Guisan et 
al. (1998) analyse and predict correlations between alpine plant species 

distribution and environmental variables using two types of GLMs in 
Switzerland.  The first model uses a binomial GLM with only the mean 

annual temperature, while the second uses a logistic model restricted to 
areas within temperature range so that ordinal abundance data can be 
adjusted.  Both models are mapped using GIS.  The stratified modelling 

approach is concluded to better fit the variability within the optimal 
altitudinal zone for the species.  As the model does not include areas 

outside of the species range, the prediction of new areas, as required in 
invasive pest modelling, may not be well adapted to this technique. 

Biomapper is a GIS and statistical tool designed to build habitat suitability 

models and maps for different species of animal or plant (Hirzel et al., 
2002).  It is based on the Ecological Niche Factor Analysis that computes 

HS models without absence data and that explain the ecological 
distribution of the species.  The extracted factors are totally uncorrelated 
but have biological signification.  This first factor is the marginality factor, 

which describes how far the species optimum is from the mean habitat in 
the study area.  The specialisation factors are sorted by decreasing 

amount of explained variance.  They describe how specialised the species 
is by reference to the available range of habitat in the study area.  
Therefore, only a few of the first factors explain the major part of the 

whole information. 

http://www2.unil.ch/biomapper/species-list.html
http://www2.unil.ch/biomapper/enfa.html
http://www2.unil.ch/biomapper/enfa.html#Marginality
http://www2.unil.ch/biomapper/enfa.html#Specialisation
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Table 1.  Modelling techniques/tools used to predict invasive species distributions  

Modelling 

technique 

Type of 

predictions 

Description Type of 

response 

variable 

Capability for 

treatment of 

Uncertainty 

Spatial Reference 

BIOCLIM 

 

Probabilistic Envelope model- Climate 
pattern-matching with 
minimum bounding 
rectangle (MBR) 

P No Capability to 
inform GIS 

Elith J, et al. 2006; 
Barry S, Elith J.  
2006 

Classification tree Class 

 

Multinomial 

General statistical 
procedure for defining set 
membership based upon 
environmental correlates 

PA Yes 

 

Capability to 
inform GIS 

Guisan A, 
Zimmermann NE.  
2000; Araújo and 
New 2007 

GARP 

 

Probabilistic  rule sets from genetic 
algorithms - Generates 
environment-description 
rules using machine-
learning techniques  

PA No 

 

Capability to 
inform GIS 

Guisan A, 
Zimmermann NE.  
2000; Peterson 
AT, Vieglais DA.  
2001; Elith J, et al. 
2006; Araújo and 
New 2007 

GAM Probabilistic  regression: generalised 
additive model 

PA Yes Capability to 
inform GIS 

Richardson DM, 
Thuiller W.  2007; 
Elith J, et al. 2006 

GLM 

 

Probabilistic  regression; generalised 

linear model 

PA relative 

abundance, 
Individual 
counts, 
species 
richness 

Yes 

 

Capability to 

inform GIS 

Guisan and 

Theurillat, 2000; 
Vincent and 
Haworth, 1983 

MARS 

 

Probabilistic regression; multivariate 
adaptive regression 
splines 

PA Yes Capability to 
inform GIS 

Leathwick et al. 
2005 

MAXENT 

 

Probabilistic  maximum entropy 

Probabilistic machine 
learning technique based 
on the distribution of 
maximum entropy  

PA 

 

 

No 

 

Capability to 
inform GIS 

Phillips et al. 
2006; Araújo and 
New 2007 

 

maximum-
likelihood 
classification 

Probabilistic based on two principles of 
normal distribution of cells 
in the multidimensional 
space and Bayes' 
theorem.   

Qualitative 
(categorical, 
nominal) 

 

 

considers both the 
variances and 
covariances of the 
class signatures 

Capability to 
inform GIS 

Frank, 1988 

Bayes formula Probabilistic  

Binomial 

shows the relation 
between one conditional 
probability and its inverse 

PA Uncertainty 
analysis 

Capability to 
inform GIS 

Aspinall, 1992; 

Brzeziecki et al., 
1993 

Artificial Neural 
Networks (ANN) 

Classification 

 

General modelling 
technique based on 

machine learning  

 

PA Rare or often only 
point estimates 

however Bayesian 
techniques possible 

Capability to 
inform GIS 

Gevrey and 
Worner 2006 

CLIMEX 

 

Probabilistic Match climates function 
Climate pattern-matching 
procedure generates an 
index of climatic similarity  

PA Sensitivity Analysis Built-in Sutherst RW, 
Bourne AS.  2009 

DOMAIN  

 

measure of 
multivariate 

distances 

Climate pattern-matching 
using a point-to-point 
similarity index  

P variable sensitivity Built-in Carpenter et al. 
1993 

BIOMAPPER - 
ENFA (Ecological 
Niche Factor 
Analysis)  

 

Probabilistic Computes suitability 
functions by comparing 
the species distributions in 
ecogeographical variables 
space with that of the 
whole set of cells using a 
multivariate approach  

P  

 

 

No Built-in Hirzel et al., 2000 

NAPPFAST  

 

Probabilistic Online templates for 
phenology, infection, and 
empirical models and a 
climate-matching tool  

 

PA Identifies biases 
and uncertainty 
ranges at fixed 
levels of risk  using 
Percent Absolute 
Difference (PAD) 
analysis.   

Built-in Magarey et al. 
2007 
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Araújo and New (2007) advocate the use of multiple models within an 
ensemble forecasting framework and described alternative approaches to 

the analysis of bioclimatic ensembles, including bounding box, consensus 
and probabilistic techniques.  An ensemble is an idealization consisting of 

system copies, considered all at once, each of which represents a possible 
state that the real system might assume at some specified time.  Multiple 
copies are simulated across more than one set of initial conditions, model 

classes, parameters and boundary conditions (predictors in a statistical 
model e.g. climate variables).  Each combination is one possible state of 

the system being forecasted.  Multiple simulations using different 
parameter values enable parameter uncertainty to be assessed.  Araújo 
and New (2007) use different model classes including polynomials and 

smoothing splines of different orders in general linear or additive models, 
nodes in classification and regression trees, hidden layers in neural nets, 

and various forms of process-based models.  Model types included 
Artificial neural networks, Bagging trees, Boosted additive trees, GARP, 
and MAXENT. 

3.2. Climate matching and envelopes 

Climate matching is a common technique used to predict where exotic 
species could occur if establishment in a new region is successful.  
Richardson and Thuiller (2007), for example, use nonparametric niche-

based modelling (i.e. a generalized additive model - GAM) calibrated on 
the current distribution of each South African biome to map regions of the 

world that are climatically similar to South African biomes.  They 
determine climate matched countries and biomes in order to evaluate 
potential invasive plant distributions in South Africa.  GAM is used to 

relate the biome distributions to the four selected bioclimatic variables.  
The model is calibrated using a random sample of the data and using 

Akaike Information Criterion (AIC). 

Matched climatic conditions do not, however, perfectly explain where a 
species could occur.  The extent and distribution of invasive species are 

influenced by interactions between environmental conditions such as 
climate and anthropogenic factors.  Hence, when using an approach like 

GAM exceptions occur in fragments of other biomes, riparian zones, and 
areas that were planted by humans (Richardson and Thuiller, 2007). 

Nevertheless, climate matching still serves an important role in providing 

screening information that can act as a starting point in the modelling 
procedure and make the decision-making process more objective.  

Additional factors need to be considered alongside climate such as the 
roles of competition or mutual symbiosis in defining actual invasive 
potential (Richardson and Thuiller, 2007).  This is evident in 

Hartley et al. (2006) who note that Argentine ant (Linepithema humile) is 
often competitively dominant against other ant species, and can adapt to 

wide variety of novel hosts, despite a lack of co-evolutionary history.  
Climate can alter the state of these interactions, and therefore still exerts 

a sizeable influence on invasive ant abundance and distribution. 
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3.3. Stochastic modelling 

To capture and characterise the uncertainty inherent in invasive species 
spread over time, a stochastic simulation model may be appropriate.  This 
approach has not been as widely employed as deterministic approaches, 

but several important studies focusing on invasive species issues can be 
cited.  Yemshanov et al. (2009) use a spatial stochastic simulation to 

quantify pest risks and uncertainties.  Rafoss (2003) develop a method to 
predict the establishment and spread of a bacterial disease of potato.  The 
study uses a stochastic simulation in GIS to combine environmental 

variables and simulate dissemination behaviour of the pest.  This paper 
attempts to define the size of an area affected by an introduction of the 

disease to a given new region.  The stochastic model specifies specific 
land types (e.g., potato cropping areas) and treated entry as a random 

event. 

The method put forward in Pitt et al. (2009) is deserved of special 
mention in this review.  The study models L. humile spread using a 

spatially explicit stochastic simulation model of dispersal within a GIS 
framework to recreate the historical spread of the insect in New Zealand.  

Probabilistic maps are used to simulate local and human-assisted spread 
to identify areas at risk of infestation.  These model predictions are 
compared to a uniform radial spread model in terms of its ability to 

explain the historical data.  Their results indicate that the uniform spread 
model performs optimally early in the invasion process, but the simulation 

model is more successful in the latter stages of the simulation.  This 
finding is used to highlight the potential for different search strategies to 
be effective at different stages in an invasion when attempting to optimize 

detection. 

The Pitt et al. (2009) study uses raster maps to represent population 

distributions and open source software - Python and C, within the open-
source GIS GRASS.  The model is based on a raster map for each year to 
represent either the presence or absence of the species in a raster cell.  

The software developed by the author is titled MDiG and presents an open 
and standardized platform for species dispersal simulation.  The results 

display probability distributions of possible future spread scenarios for the 
species.  Rather than making specific conclusions about where the species 
will have established and at what time, the results indicate a relative 

likelihood of establishment across the landscape. 

There are several distinct advantages of the MDiG modelling approach put 

forward in Pitt et al. (2009).  Firstly, it allows replicates of model runs, 
keeps track of all the maps, and can merge into an average map for each 
time step.  Secondly, MDiG captures different means of spread including 

long distance, shaped neighbourhoods and local contiguous.  Local spread 
via budding and jump dispersal facilitated by human transport can be 

simulated using the model.  Potential spread rates are influenced by 
dispersal kernel shapes that describe the distance that propagules travel 

and Allee effects that can limit spread rates and constrain population 
fronts that otherwise are predicted to accelerate indefinitely.  A budding 
spread rate of 150 m/yr for regions where habitat and climate are not 

limiting (raster resolution of 150 m).  The dispersal model links to the 
habitat suitability layer to dictate survival and controls the probability that 
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an occupied cell might become extinct.  The suitability layer is created by 
expert knowledge about the suitability of various land cover types for 

persistence of populations of this species. 

While stochastic modelling is preferable in group-decision making 

requiring the full extent of uncertainty to be made known to decision-
makers, it is noted that it is also possible to use a simpler deterministic 
modelling approach to minimise complexity.  However, there are dangers 

associated with this approach.  For instance, Mayer et al. (1993) compare 
deterministic and stochastic models of screwworm fly (Cochliomyia 

hominivorax) incursion into Australia.  They conclude that the main 
discrepancies between the models occur at the fringes of the expanding 
infestation, with the deterministic model under-predicting population 

densities.  Essentially, the deterministic model fails to detect the small 
proportion of the population at the front line of the incursion, while the 

stochastic model does not.  Modellers of systems that encompass extreme 
events and distributions should consider this difference in model selection. 

4. Evaluate the predictions – power and variance 

Simulating invasive species impacts over time and projecting them on to 

maps is invariably a complex exercise involving a lot of biological and 
ecological uncertainty.  It is therefore very important that controls are put 
in place to avoid the misinterpretations of spread and impact that have 

the potential to mislead stakeholders.  For this reason, independent 
evaluation of invasive species risk models is needed to avoid flawed 

results being used to inform decisions, or model results being extrapolated 
inappropriately. 

Several studies highlight the need to evaluate model predictions.  
Sutherst and Bourne (2009), for instance,  compare logistic regression 
and CLIMEX models in predicting range extensions of the non-equilibrium 

distribution of the livestock tick in Africa.  They find that logistic 
regression better describes the spatial data but displays inferior 

performance to CLIMEX in predicting range extensions.  They therefore 
question the effectiveness of descriptive, statistical models (i.e. logistic 
regression) alone to predict changes in species ranges.  Peterson and 

Vieglais (2001) use the GARP modelling method for ex post (i.e. after the 
invasion event) projection of models onto new landscapes.  Peterson et al. 

(2008) advise that absence data should not be employed in evaluating 
model quality in niche model applications.  This is because ecological 
niche models are often based on species presence information alone due 

to a lack of absence information.  Even if absence data is available, it is 
often restricted to current distributional area (Peterson et al., 2008).  

Hence, for an invasive species niche model prior to introduction into a 
region, one would have counted its future adventive distributional area as 
absence even though this area was within its niche extent as shown by 

the later invasion. 

The Receiver Operating Characteristic (ROC) curve provides one option for 

model evaluation when employing invasive pest risk models as decision-
support tools.  The ROC curve, is a commonly applied approach to 
evaluating predictive distribution models that avoids subjectivity in the 
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threshold selection for evaluated probabilities by summarizing model 
performance over all possible thresholds.  However, Lobo et al. (2008) 

questions the reliability of the ROC curve and cautions against its use for 
several reasons, including: (a) ROC ignores the predicted probability and 

the goodness-of-fit of the model; (b) it considers model performance in 
probability levels across the ROC curve which could be irrelevant to the 
evaluation; (c) it weights false positive and the false negative errors 

equally; and (d) it does not give information about the spatial distribution 
of model errors.  Lobo et al. (2008) make these criticisms based on 

comparison among models of different species.  Of course, species differ 
in home range sizes and therefore extent, and these problems may not be 
relevant for model comparison for single species.  For example, in regards 

to criticism (c) a modified ROC can be used that substitutes absence data 
for proportion of area considered to be presence (Phillips et al., 2006; 

Peterson et al., 2008).  Petersen et al. (2008) recommend a modified ROC 
procedure that disposes of absence data, instead using x-axis values as 
the proportion of the overall area predicted as present, rather than using 

commission errors based on the aforementioned issues of absences. 

5. Provide a map of prediction confidence with 
levels of uncertainty 

5.1. Indicate where the model is applied, interpolated and 

extrapolated 

It is important when using visual devices like maps and figures in group-

based MCDA to be as open and transparent as possible in regards to the 
uncertainty inherent within it.  Venette et al. (2010) highlight the need for 
substantial improvement in visual decision-support model documentation, 

communication of uncertainty, data accessibility, human behaviour (i.e. 
agriculture interactions) and improved training.  It is important not to 

portray a false sense of accuracy to decision-makers by concealing what 
may or may not be captured by a species impact map, or the model 
behind this map. 

With this in mind, Sutherst and Bourne (2009) recommend statistical 
models combined with GIS for interpolating sample data to fill in missing 

values.  However, for extrapolating beyond the data sets, as is necessary 
with species invasions or climate change scenarios, a different approach is 
called for using a tool like CLIMEX.  Rather than trying to achieve a 

precise description of the distribution (i.e. using regression), CLIMEX 
interrogates the data understand critical climatic conditions for a species 

(Sutherst and Bourne, 2009).  Barry and Elith (2006) consider the sources 
of errors in species habitat models.  They divided them into two main 
classes: (i) error resulting from data deficiencies, and (ii) error introduced 

by the specification of the model.  Common data errors include missing 
covariates and samples of species‟ occurrences that are small, biased or 

that lack absences.  Almost all models examined in Barry and Elith (2006) 
contain missing covariates, which introduces significant spatial correlation 

in the errors of the analysis.  Aspinall (1992) create error bounds by using 
random subsets of the data in a bootstrapping type method.  Errors are 
modified within the GIS by changing from 50m pixel to 1km grid square 



August, 2010 

  16 

resolution.  The key message of the paper is that by analysing the errors, 
the model results can be interpreted more appropriately. 

Several papers have reviewed uncertainty methods available for spatial 
distribution modelling.  Elith et al. (2002) review the aspects of 

uncertainty and methods that are relevant to habitat maps developed with 
logistic regression.  They address the problems of user, model, and 
random and systematic errors and suggest methods for developing 

realistic confidence intervals in relation to decision-making.  Regan et 
al. (2003) analyse treatments of uncertainty in a variety of population 

models.  The authors define uncertainty as ignorance about parameter 
values (e.g. measurement error and systematic error).  Risk models 
include an analysis of variability and parameter uncertainty to give the 

most comprehensive and flexible endpoint.  The paper looks at different 
risk assessment models at the population level and the relevant sources of 

uncertainty, and identifies which modelling techniques have what level of 
uncertainty treatment (see Table 1, “Capability for treatment of 
Uncertainty” column, p. 10). 

Pitt et al. (2009) attempt to tackle uncertainty in stochastic models by 
random sampling from the spread kernel and survival module probability 

distributions.  Hartley et al. (2006) develop a novel method to test for 
uncertainty in spatial predictions specifically for invasive pest distribution 

models.  Their approach uses a multi-model inference to generate 
confidence intervals that incorporate both the uncertainty involved in 
model selection as well as the error associated with model fitting.  Using 

L. humile as a case-study, the uncertainty analysis is used to determine 
that not only is the ant most likely to occur at a 7-14°C mean daily 

temperature in midwinter, but also an important extreme value at the 
maximum daily temperatures during the hottest month averages 19–
30°C.  The approach quantifies the costs of making false negatives vs. 

false positives in order to connect modelling to decision-making5. 

Methods also exist that aim to make the best decision in the face of 

extreme uncertainty.  Moilanen et al. (2006) apply information-gap 
decision theory to develop uncertainty analysis methods for reserve 
selection in order to seek a solution that is robust in achieving a given 

conservation target, despite uncertainty in the data.  Information-gap 
theory uses “distribution discounting,” in which the conservation value is 

penalized by an error measure termed accuracy of statistical prediction.  
Information-gap theory can accommodate non-statistical uncertainties 
such as the subjective choice of candidate variables and the structural 

assumptions embedded in spatial analysis to account for unknown levels 
of potentially-extreme uncertainty.  The trade-off between predicted 

probability (i.e. in the case of Moilanen et al. (2006), conservation priority 
value) and the certainty of the prediction may lead to different decisions 

                                       

5 Hartley et al. (2006) quantify false negatives by evaluating the unnecessary 

effort that is expended in border surveillance and response to an incursion 

against a species that could never establish.  This ignores the possibility of a 

single surveillance procedure designed for one species detecting multiple species.  

Social and ecological costs that would be incurred in the event of a successful 

invasion also need to be considered. 
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that reflect the planner‟s attitude towards risk.  Choosing sites that have 
lower conservation values with more certainty reflects aversion to risk. 

5.2. Consider species habitat and home range 

Ecological habitat and species home range are essential in distribution 

modelling, be it deterministic or stochastic, and can serve as a practical 
sensibility test for risk maps derived from probability mofdels.  As 

mentioned previously, climatic considerations are a large component of 
habitat suitability.  However, additional ecological variables also garner 
consideration, and in some cases there may be a great deal of uncertainty 

as to how these variables will impact distribution patterns. 

Peterson and Vieglais (2001) provide an example of predicting invasions 

by projecting the ecological model onto landscapes that are likely to be 
invaded.  They use a web interface to apply the derived rule set manually 

to a parallel set of coverages specifically for the test region of special 
interest.  An alternative and more practical approach is to develop the 
ecological model on a set of coverages that extend across both the native 

and the potentially invaded regions. 

In some instances homogenous habitats can be assumed.  For large, 

broad-acre agricultural regions this may be appropriate, but for more 
diverse landscapes into which an invasive species may be introduced the 
spatial heterogeneity must be considered.  For complex spatial 

environments, metapopulation models (e.g. Hanski et al., 2000) or 
stochastic patch occupancy models (e.g. Moilanen, 2004) may be 

appropriate. 

6. Reclassify predictions into robust, meaningful, 

and honest values for policy makers and the public 

Pest risk maps can be powerful visual communication tools to describe 
aspects of an incursion (Venette et al., 2010).  They enable decision-
makers to receive a wealth of information relatively quickly, and to 

visualise the threat posed by invasive species.  Numerous spatial decision 
support tools for workshop environments have been developed and 

applied with success.  A summary of these applications is contained in 
Table 2, p. 18.  The decision problems to which they are applied are 
varied, but illustrate the general applicability of mapping techniques 

group-based decisions.  We outline some of the techniques and 
applications in more detail below. 

The Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) is 
a software tool produced by the Australian Department of Agriculture, 
Forestry and Fisheries‟ Bureau of Rural Sciences.  MCAS-S is a spatial 

decision-support tool designed for application in real-time stakeholder 
workshops, where it helps participants visually link mapped information to 

a Multi-Criteria Decision Analysis (MCDA) decision making framework 
(Lesslie et al., 2008).  MCAS-S can be used with issues of various scales 
and resolutions, and does not require GIS programming knowledge by the 

user.  User-friendly features of MCAS-S include the capability for a 
decision-making group to view, classify and combine different types of 
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mapped information in an interactive, real-time setting.  MCAS-S can also 
produce statistical reports for specific regions quickly and simply. 

 

 

Table 2. Multi-criteria decision analysis spatial tools: a selected list of GIS-based 

and standalone software-based applications for natural resource management 

issues (Lesslie et al. 2008). 

Software/analysis Application Reference 

1.  GIS-based applications 

IDRISI (®Clark University) GIS-based 

MCA 

Earthquake hazards; crop suitability; soil 

erosion in Ethiopia 

Ceballos-Silva and Lopez-Blanco (2003); 

Dragan et al. (2003) 

ASSESS (A System for SElecting Suitable 

Sites) written in ArcInfo AML (®ESRI) 

Radioactive waste repository; soil 

conditions; catchment condition 

Veitch and Bowyer (1996); Bui, (1999); 

Walker et al. (2002) 

ArcView (®ESRI) GIS-based MCA Planning 

tool 

Urban land use Pettit and Pullar (1999); Dai et al. (2001) 

ILWIS GIS Nature conservation value of agricultural 

land 

Geneletti (2007) 

MapInfo (®) GIS-based DSS Urban transport policies Arampatzis et al. (2004) 

Spatially-explicit sensitivity analysis 

framework for decision making 

 

Invasive plant pest management Roura-Pascual et al. (2010) 

 

2.  Hybrid applications 

SIMLAND – cellular automata, MCA and 

GIS written in C and using ArcInfo GIS 

Land use change Wu (1998) 

HERO (Heuristic multi-objective 

optimisation) combined with GIS, 

AHP and Bayesian analysis 

Forest planning; habitat suitability Kangas et al. (2000); Store and Kangas 

(2003); Store and Jokimaki 

(2001) 

3.  Stand-alone software 

 

LMAS – Land Management Advice 

System 

Spatial expert system Cuddy et al. (1990) 

MULINO-DSS (MULti-sectoral, 

INtegrated and Operational DSS) combines 

simulation models, mapping and MCA 

Water resources Giupponi et al. (2004) 

 

IWM – decision support system for 

Management of Industrial Wastes 

Industrial waste Manniezzo et al. (1998) 

 

GSA (Global Sensitivity Analysis) in 
SimLab (Software for Uncertainty and 

Sensitivity Analysis) 

Hazardous waste 

disposal 

 

Gomez-Delgado and Tarantola (2006) 

 

MCAS-S - Multi-Criteria Analysis Shell for 

Spatial Decision Support 

biodiversity and salinity mitigation trade-

offs in revegetation 

Lesslie et al. (2008) 

CommunityViz planning software and the 
Placeways suite of GIS offerings provide a 

real-time interactive environment of 3-D 

visuals, intelligent maps and dynamic 

analysis tools. 

Economic options for rural areas, urban 

planning, conservation planning 

Placeways, LLC Ltd. 
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CommunityViz® (Placeways LLC, Boulder, Colorado) is another software 

package that facilitates decisions in a workshop environment and can 

bring in pest risk maps in a user-friendly manner.  The software serves as 

an extension to ArcGIS (ESRI) in order to create an interactive decision-

making platform.  The software is designed to inform decisions concerning 

alternative futures (scenarios) by analysing decision effects, and can 

create three-dimensional (3D) map outputs.  CommunityViz is designed 

for real-time workshop communication.  Some aspects of using this 

software package are user-friendly so that an inexperienced operator can 

utilise them, while others are more sophisticated and require knowledge 

of GIS. 

A framework for deciding among options, in the form of static priority 
maps is developed for the management of woody invasive alien plants in 

South Africa in Roura-Pascual et al. (2010).  The framework features a 
spatially-explicit sensitivity analysis.  The authors use a combination of 

analytical hierarchy process, Earth mover‟s distance, Shannon Diversity 
index and Akaike‟s Information Criteria to determine the best 
management option based on sensitivities among methods.  Unlike 

MCAS-S and CommunityViz, the majority of the analysis in Roura-Pascual 
et al. (2010) is completed “behind the scenes” by an analyst.  However, 

the models are linked to the decision problem and can therefore be used 
as part of a decision-making group workshop by presenting clear, 
meaningful maps.  Roura-Pascual et al. (2010) includes criteria related to 

management history, fire risk, and the age, identity, density and spread 
of invasive plants.  Each factor has a weight associated with it that 

reflected its relative importance in prioritizing areas for management.  The 
authors change the weights using three types of sensitivity analysis and 
assess the effect of these changes on the spatial structure of the resulting 

priority maps in three different management regions.  Model outcomes are 
not considered as discrete elements by evaluating rank order when 

changing the decision criteria, but instead spatial configuration is 
evaluated spatially explicitly using distance measures.  By determining the 

importance of criteria in shaping priority maps, the sensitivity analysis 
framework enables the identification of necessary criteria to produce 
outcomes matching pre-selected management objectives.  This is crucial 

for cost-effective management, as acquisition and curation of data is 
expensive. 

7. Conclusions 

This paper has reviewed a cross section of the modelling and ecology 

literature and described methods and techniques that may be useful in 
developing visual information tools for use in group-based MCDA for 

invasive species risk management decisions.  These decisions might 
involve the prioritisation of species by industry or region, the prioritisation 
of pest and disease entry pathways, or choosing the most desirable pest 

management strategies post-invasion.  In all of these decisions, an 
invasive species population, spread and distribution model is useful in 

helping the decision-making group to appreciate the idiosyncrasies of 
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individual invasive species, and to respond to these threats more 
effectively.  Projecting this population and impact information on to maps 

familiar to the group will enhance the uptake of this information by 
placing decision-makers psychologically closer to incursion events, but the 

process of doing so is complex.  In this review, we have discussed some 
of the basic steps that should be followed, including choosing model scale, 
clarifying the area of interest for the MCDA and choosing the form of 

population model to use to project population distribution and abundance 
on to maps.  We have also highlighted methods that can be used to 

evaluate the strength of model predictions and communicate this to 
decision-makers through maps.  We have also discussed a range of group 
decision-making applications of map-based approaches, and identified 

some of the tools used.  This background knowledge will be extremely 
beneficial in the design and use of state-of-the-art map-based tools to 

help Australian plant industries to better manage the biosecurity threats 
facing their industries. 
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