

Cooperative Research Centre

for National Plant Biosecurity

Final Report

CRC10073

Surveillance Simulation Platform

Authors

Mark Reynolds

Juan Jose García Adeva

16 December 2011

 CRC10073 Final Report Page 2 of 26

© Cooperative Research Centre for National Plant Biosecurity

All rights reserved

Project Leader contact details:

Name: Mark Reynolds

Address: CSSE, UWA M002, 35 Stirling Highway, Crawley WA 6009

Phone: 08 6488 2279

Fax: 08 6488 1089

Email: mark.reynolds@uwa.edu.au

CRCNPB contact details:

Cooperative Research Centre for National Plant Biosecurity

LPO Box 5012

Bruce ACT 5012

Phone: +61 (0)2 6201 2882

Fax: +61 (0)2 6201 5067

Email: info@crcplantbiosecurity.com.au

Web: www.crcplantbiosecurity.com.au

mailto:info@crcplantbiosecurity.com.au
http://www.crcplantbiosecurity.com.au/

 CRC10073 Final Report Page 3 of 26

Table of contents

1. Executive Summary .. 4

2. Aims and objectives .. 4

3. Key findings ... 6

4. Implications for stakeholders ... 22

5. Recommendations .. 22

6. Abbreviations/glossary .. 23

7. Plain English website summary ... 23

 CRC10073 Final Report Page 4 of 26

1. Executive Summary

Biosecurity plays a key role in the economic viability of the plant-based industries

of countries like Australia. Plant pests and diseases can have devastating effects

on food safety, trade, market access, market development and, ultimately, the

profitability and sustainability of plant industries. Incursion and outbreak

management are key aspects to biosecurity. As soon as an incursion of plant pest

or disease is detected and reported to the appropriate authorities, biosecurity

managers have to apply control mechanisms in order to avoid it from spreading.

Currently, researchers provide biosecurity managers with biological parameters

about the pest or disease on host range, mode of spread, and potential

distribution based on climatic factors. However, strategies to test pre-emptive

surveillance and estimate rates of spread in a spatial environment in real time are

not available.

In CRC10073, we have developed a 'what if' scenario simulation tool to address

this shortcoming.

The project milestones haven successfully achieved: a generic simulator

framework is in operation, specific versions for a range of particular example

pests and diseases have been demonstrated, validation against actual incursion

data has been piloted, details of design and validation have been published and a

robust and useful graphical interface has been successfully demonstrated to

potential users from DAFWA and DAFF (Federal). The current production of the

project consists of a large pool of technological artefacts including computer

infrastructure, support services, three simulation prototypes (i.e. Fruit fly, Fire

blight, and Gypsy moth), and a generic software application framework.

These outcomes concur with the original project objectives, by offering the

potential to analyse and map the habitat and incursion and also the speed and

spread of the invasive pest, thus providing a valuable tool for the industry and

also saving money and time (timing is one factor that is extremely important for

implementation of an eradication program).

The project members have published seven conference publications, five press

releases, and six journal papers have been published, are currently under review

or are in the process of being submitted.

2. Aims and objectives

Aim: to produce a simulation platform to estimate rates and patterns of spread of

plant diseases and pests and the time-changing extent over the landscape. It has

to provide plant pest outbreak decision makers with suitable computer tools to

support their decision process.

Objectives:

 To develop a generic simulation model and toolset to predict spread of

Emergency Plant Pest (EPP) high-risk species.

 To use this to identify high-risk locations for various EPPs.

 To validate the technology and develop methodologies for its effective

usage via replication of well-documented, historic outbreaks.

 CRC10073 Final Report Page 5 of 26

 Will provide Biosecurity scientists and managers with a real-time

interactive surveillance risk analysis tool.

The main outcomes of the project are:

▪ a surveillance prediction simulation platform for validating surveillance

strategies

▪ novel landscape-level modelling techniques for pest spread simulation, and

▪ validated simulation technology using historical emergency plant pest

incursion data.

Beneficiaries:

The primary end-users of the tool are pest/disease outbreak managers. The

convenient user-friendly, robust and flexible interface to a real-time simulator

means that managers can quickly try a range of hypothetical containment

strategies and see the likely effects on the outbreak.

The completely portable web-based access means that the calculations are

carried out on the powerful servers rather than the users’ computers. They will

need no special hardware or software. The web-server based technology also

means that extensions, upgrades and maintenance of the software can be carried

out without any need for access to or interference with the computing devices of

any of the end-users.

Other end-users include Biosecurity scientists and researchers needing general,

flexible and robust modelling tools and frameworks. The system allows important

parameters governing the spread of particular pests to be easily adjusted, if

desired, depending on the latest advice of local experts.

The general framework of the simulator is designed to allow rapid

‘personalisation’ to novel pests and diseases. The modular re-usable design and

use of the popular Java programming language and well-documented

implementation means upgrades to allow modelling of new pests can be quickly

installed.

These outcomes concur with the original project objectives, by offering the

potential to analyse and map the habitat and incursion and also the speed and

spread of the invasive pest, thus providing a valuable tool for the industry and

also saving money and time (timing is one factor that is extremely important for

implementation of an eradication program).

Finally, the project members have published seven conference publications, five

press releases, and had six journal papers accepted, currently under revision or in

the process of being submitted. These contain a range of lessons and evidence for

 CRC10073 Final Report Page 6 of 26

developers of other simulation software. The lessons include entomology,

mathematical modelling and software engineering aspects. The applications range

from plant pest modelling, to animal biosecurity, ecology and human health.

3. Key findings

The main outcomes of the project are:

▪ A surveillance prediction simulation platform for validating surveillance

strategies.

▪ Novel landscape-level modelling techniques for pest spread simulation.

▪ Validated simulation technology using historical emergency plant pest

incursion data.

The outputs are thus not primarily ‘findings’, but the development of tools and

techniques. These are described in detail in the main publications of the project

(see list later) as well as in technical reports and our wikis (access granted by

request to authors).

Here we will, using material from the publications, summarize the main features

of the tools and techniques under the following headings:

 Pests covered

 Generic Simulator Framework

 Modelling Modules

 Interface and Main Functionality

 Development Environment

 Technology

 Evaluation

 Validation

An account of the details of our decisions and experiments in designing,

implementing and testing the software is thus presented as our ‘findings’. This

account will be useful for those using the tools and those building on them in

follow-on work.

3.1. Pests Covered

The simulator is engineered to be able to be conveniently modified to work for

a wide variety of EPPs, but as part of the process of development and in order

to have concrete demonstrations of the technology, we have released specific

versions for the following three EPPs of major concern:

 Queensland Fruit Fly (bactrocera tryoni)

 Asian Gypsy Moth (Lymantria dispar), and

 Fire blight (Erwinia amylovora).

 CRC10073 Final Report Page 7 of 26

These three simulators are accessible and conveniently usable online from our

servers for interested researchers. Please contact the authors for access and

instructions.

3.2. Generic Simulator Framework

Because we aimed at providing a framework allowing fast and convenient

production of simulators for other insects and other EPPs in the future, the

code base is modularized and organised in appropriate layers to facilitate their

reuse, modification and/or replacement.

Some modules, such as those supporting the spatial model, differ very little

among different simulators. Other modules, such as those managing user

interfaces, are deliberately very similar across EPPs but need certain

differences. Yet other modules are completely different and may even be

absent from some simulators because there are differences in the

mechanisms of spread across the EPPs.

Another factor for our design was that the simulator source code should allow

extending certain modules such as the dispersal mechanisms to accommodate

different expert opinions and expertise.

We considered that an important concept, related to software modelling

techniques, that could facilitate the practice of reusability in this work is

design patterns. A design pattern `is a common solution to a common

problem in a given context' (Booch et al., 1999). They describe common

analysis and design fragments in order for them to be reused (Gamma et al.,

1995). Design patterns are increasingly becoming the building blocks for

reusable components, hence allowing architects and designers to have more

control over the quality and consistency of the final implementation (Garland

and Anthony, 2003)

 CRC10073 Final Report Page 8 of 26

Figure 1: General Architecture of the Simulator

3.3. Modelling Modules

The simulation model implemented by the Simulation Engine includes several

underlying deterministic or stochastic models that include:

 spatial model

 life-cycle model

 host seasonality model

 weather model, and

 dispersal model.

Full details of all modules are available in our publications but here is a brief

description of the spatial model and the dispersal model respectively, focusing

on key aspects of their implementation.

The relationship between the models is set out on Figure 2.

 CRC10073 Final Report Page 9 of 26

Figure 2: Conceptual diagram of the simulation model and its related models.

Spatial Model

The spatial model represents the two-dimensional simulation area and the key

elements contained within it. This section describes those implementation

aspects of the spatial model which are important to fulfill the requirements.

The simulation area consists of a landscape whose bounds are initially defined

by the user through the simulator's user interface. Figure 3 serves as an

example screenshot of the simulator when selecting a map area where to

perform the simulation. The extent will usually vary from a few hectares to

several hundred thousand km2 (e.g. typical simulations will happen in areas

of up to 500 km by 300 km). The landscape can contain areas (i.e. polygons)

representing an obstacle (e.g. a water body or a desert), illustrated by the

dark area in Figure 3. Areas representing suitable habitat for fruit flies (e.g.

an orchard) are depicted as shown by the two yellow areas in Figure 3. Other

features such as roads, building areas, rivers, oceans, etc. are also

represented. The landscape will typically contain at least one observation

indicating the incursion to study, which the blue marker shown in Figure 3

represents. This landscape is represented as a rectangular planar region. The

landscape boundaries, given by two global coordinates that correspond to the

bottom-left and top-right corners of the extent, remain constant once the

simulation area has been selected by the user. Discretisation of this landscape

is performed by means of a rectangular sparse grid, where the number of

horizontal cells indicates the spatial resolution and is selected by the user

 CRC10073 Final Report Page 10 of 26

through the horizontal slider shown in Figure 3. The number of vertical cells

and cell size are calculated based on this user-defined horizontal resolution.

The calculation used to determine the cell corresponding to a global co-

ordinate applies the Spherical Law of Cosines (Banerjee, 2004) to calculate

the horizontal and vertical distances from the bound bottom-left and top-right

coordinates of the simulation viewing area. This is then divided by the number

of cells in each dimension. The advantage of this grid configuration is that it

resembles a raster image. Therefore, there is a plethora of algorithms from

the area of computer graphics to take advantage of. Consequently, an area

representing an orchard or an obstacle is expressed as a closed polygon

defined by the list of its ordered (either clockwise or counterclockwise) vertex

coordinates, each of them is converted to its corresponding cell. Frequent

operations include calculating the extend of areas, achieved by using

Euclidean geometry such as Meister's formula, and determining whether a

particular cell is included within an area, which is accomplished by applying

the Jordan curve theorem as proposed by Haines (1994).

However, the most distinctive feature of our spatial model is its sparse

representation, where only those non-empty cells are created dynamically as

needed. This reduces significantly initialization time, contributes to a much

more flexible use of the computer memory, and improves execution time by

ignoring most empty cells. Besides, those cells that become vacant (i.e. those

not containing any more individuals) can be discarded when the memory

resources become scarce, until they have to be created again if circumstances

arise.

Dispersal Model

This stochastic model represents the ability of fruit flies to fly in order to find

new habitats or resources, hence contributing to the stabilisation of their

population when predation or lack of food would cause local extinctions

(Goodwin et al., 2005).

From an initial population of fruit flies at a known location, the dispersal model

aims to determine:

i) the speed at which this population will spread over the full extent of

suitable environment available, and

ii) the distance range that this population will cover.

Therefore, given a cell in the grid containing individuals, this model

determines how many of these individuals disperse and into which

destinations. Dispersal is triggered by a combination of circumstances such as

population density, food suitability at the individual location and surrounding

areas. The model also considers dispersal barriers representing natural

features such as mountain ranges, rivers, lakes, deserts, etc. Consequently,

barriers will influence dispersal by limiting the spatial range of those fruit flies

flying in certain directions or landing in certain areas. Also, dispersal is

strongly influenced by population growth, regardless of whether this growth

happens through reproduction or migration.

The dispersal distance and number of individuals dispersing at each distance

is defined by a dispersal kernel, which describes the spatial distribution of

propagules in the vicinity as a function of distance from the dispersing location

(Garcia Adeva et al., 2011a). This kernel is based on two empirical probability

distributions that allow determination of dispersal distance and direction

respectively. The practical process of dispersal is based on the spatial model

with the grid that represents the simulation area containing at least one cell

 CRC10073 Final Report Page 11 of 26

with a number of dispersing fruit flies. For example, the blue dot in the centre

of Figure 2 represents the dispersing fruit flies (i.e. propagules). The distance

range between 0.5 and 2 km is represented by the black ring. The size of this

ring and the probability of the propagule population dispersing within it is

drawn from the empirical probability distribution representing dispersal

distances as part of the dispersal kernel. All the cells included in the ring are

possible destinations for propagules, with those two containing hosts in grey.

The probability of these hosts being detected by the subset of propagules

dispersing within this distance range is determined by the second empirical

probability distribution of the dispersal kernel. Those flies that do not detect a

host will choose a random direction.

The practical implementation of this process is as follows:

i) all the cells within the ring are selected in a list

ii) this list of cells is randomly shuffled

iii) those cells containing a host are moved to the head of the list if the

result of applying a Bernoulli random variate (Kachitvichyanukul

and Schmeiser, 1988) results in one, and

iv) propagules are distributed throughout the list.

In the case where the number of propagules is smaller than the number of

destinations (i.e. size of the cell list), propagules are clustered.

3.4. Interface and Main Features

This section enumerates and briefly discusses the key features of the system

produced, based on the specifications proposed, the architectural design, and our

multiple implementation decisions.

 The simulation time resolution is one day. This decision was made due to

the fact that the vast majority of available expert knowledge uses one day

as the time step.

 The current user interface is web-based. This decision tackles especially

the requirements of Availability. There are several advantages to web-

based simulation over a regular local software approach (Xie and D.,

2006). The simulation processes are performed in several (computer)

servers hosted remotely and managed and maintained by the technical

members of the project, while users access the simulator as a regular web

application. This method offers many interesting advantages over the

traditional desktop application approach: i) the simulator can deal with

large amounts of data regardless of how powerful the user computer is, ii)

no installation is required by users, the simulation models can be modified

or updated without having to redistribute new copies of the software to

users, and iii) access to the simulator can be controlled, adapted, or

restricted if necessary.

 The simulator offers spatial features to provide users with a better

understanding of the scale, extend, and location of dispersal over an

actual landscape. The web-based interface includes an embedded map of

Australia containing multiple selectable layers representing water bodies,

roads and railways, places, suitable areas, and obstacles to spread. The

simulation area and spatial resolution can be easily set by the user in

order to determine a suitable balance between expected precision and

time constraints during execution. Figure 3 depicts an arbitrary example of

the web user interface after defining a simulation scenario located in an

 CRC10073 Final Report Page 12 of 26

urban area. It shows how the embedded mapping tool includes the

expected features of commercial systems such as zooming to select the

area size, filtering layers, and choosing the resolution. By offering our own

web mapping system, we contribute towards fulfilling the requirement of

independence.

Figure 3: Example of web-based user interface in an arbitrary location in Perth (Australia)
with two orchards in yellow, and obstacle in grey, and an observation.

 Performing a simulation results in an extensive report that contains all the

details provided by the simulator, thus fulfilling the requirement of

interactivity. The report is organised by sections, each one corresponding

to one simulated day. For each day, the user can inspect: i) how weather

has changed in the simulation area; ii) how the total fruit population has

changed, grouped by y stages (eggs, larvae, pupae, and adults); iii) what

locations have been affected by fruit y dispersal; and iv) how population

has changed, grouped by stages, for each of the locations containing flies

at any given time. The report also contains system information including:

i) how many cells of the grid representing the simulation area have been

used by day, ii) the length of time taken for the simulator to process each

day, and iii) how much RAM the server used. Each of these results are

provided visually graphically, and as tabular data. Moreover, they can be

exported using the well-supported comma-separated values (CSV) format

so that it can be easily imported into popular spreadsheet or data analysis

applications.

 The simulator follows the Visual Interactive Simulation (VIS) paradigm

(Hurrion, 1976; O'Keefe and Robert, 1987), implying that simulation

processes occur as an animation on a visual display and the user can

interact with the running model. The user can examine the simulation at

 CRC10073 Final Report Page 13 of 26

any particular day and location obtaining a detailed graphical and tabular

account. The user can make alterations to the model parameters and

examine the new results. The benefits include i) easier verification and

validation, ii) better understanding of the results, iii) more accurate

communication of findings to other parties, and iv) potential to use the

simulation with a group for decision making.

 It is clear that different fruit y experts sometimes differ on minor aspects

of the insect behaviour; for example ranges of dispersal, oviposition, or

host preferences. The underlying models can be adjusted through the user

interface (i.e. the source code does not have to be altered) to reconcile

multiple feedback from experts. In the current version, the model

configuration is focused on settings affecting aspects of the Bactrocera

fruit y life cycle such as male/fame ratio, average number of eggs laid per

day, etc.

 The simulation is in real time. There are multiple definitions for what real-

time simulation means. We consider real-time simulation to consist of

fulfilling the conditions: i) given the same set of input parameters, multiple

simulations would take approximately the same time to complete, hence

providing a certain expectation with regards to time scale, and the time to

complete a simulation will be equal or less than the simulated time.

 The simulator allows saving the parameters that define a simulation

scenario for further reuse or sharing.

3.5. Development Environment

To design a robust and flexible piece of software that is amenable to future

extension in the most convenient way, it was essential to have a supportive

development environment allowing the careful control of collaboration, version

control and testing.

The work environment consists of a collection of processes and software

development tools, utilised and shared by all the team members, in order to

work collaboratively towards a set of common goals to create the final

software product, which in this case it is the simulation platform prototype.

There are several reasons why we consider a formal work environment

necessary as part of the development strategy: i) it contributes to maximise

programmer productivity thanks to its tools, ii) it reduces work overlap by

improving communication and reuse of resources, iii) it simplifies the

documentation process by providing much detailed and interrelated

information during the development process.

We implemented the work environment as a three-tier scheme that includes

the following tiers:

 Development: a typical development environment will comprise of a

version control system (also known as revision control or source

control system), a project management panel, an error tracking

facility, flexible documentation tools, build cycle, and automatic

documentation generation, all of them integrated. The Software

Engineers working on the project will have access to all the features of

this environment, while some users might have restricted access (e.g.

 CRC10073 Final Report Page 14 of 26

error tracking for users supporting the verification or validation

efforts).

 Staging: it keeps the most recent version of the simulation for testing

purposes, before it is deployed to the production environment.

Although this tier comprises an environment that should be as identical

as possible to the production environment, in cases of limited

resources then it could be less powerful than the production instance.

There will usually be a Software Engineer acting as Release Manager,

who should take care of updating this staging environment when an

appropriate number of changes have taken place to the source code

base. Users such as biosecurity managers involved in the project and

who are contributing to the verification or validation effort of the

simulation models will use a version of the simulator hosted in this

staging environment.

 Production: it keeps the latest stable version of the simulation. Most

users will be provided with access to the simulator hosted in this

environment. The Release Manager will be responsible for updating this

environment when the simulator version in the staging environment is

considered to be stable.

These tiers are referred to as environments instead of servers. While it is

possible for multiple environments to be hosted by the same physical

machine, it is usually preferable to avoid this practice, in particular with

regards to the production environment, which should be by itself and not

shared with any of the other environments.

3.6. Technology

This section covers the technology employed by the project or generated as a

result. The implementation of this simulation system involved working on

three main types of components:

i) system infrastructure

ii) server-side software

iii) client-side software.

The system infrastructure consists of four servers, all based on Linux 2.6.32:

i) development environment that controls the development tools such as

project management, version control, bug tracking, automatic build cycle, and

documentation

ii) staging environment, which keeps the latest version of the simulation for

testing purposes

iii) production environment that hosts the latest stable version of the

simulator, and

iv) map server that provides extensive mapping capabilities for Australia.

These servers are VMWare virtual machines running on commodity hardware.

This type of virtualised environment offers great especially demand-driven

allocation of resources, at the expense of a small performance loss. The

support software used in these servers is mostly open source. The web server

used by the four servers is the well-established Apache Project management

is provided by Trac while Subversion makes possible source version control.

Project documentation is wiki-based through MediaWiki. The map server offers

a WMF service through Geoserver and Geowebcache. Most of the layers used

for the map of Australia were obtained from the Open-StreetMap thanks to

their Creative Commons Licence and are stored by the geographical database

 CRC10073 Final Report Page 15 of 26

PostGIS.

The server-side software corresponds to the implementation of the simulation

model described above. This software was written from scratch, its source

code resulting in about 16,000 lines. The choice of language was Java 1.6 due

to the adequate features of the language but more importantly the extensive

number of support tools and associated technologies available both

commercially and freely. The simulation model is implemented as a Web

service that receives its configuration settings and simulation parameters as

an input and returns a dataset of results. This web service runs within the

context of the Web container Caucho Resin, which in turn sits on top of

Apache. Handling of web request parameters is supported by the Model View

Controller Web application framework Stripes.

Client-side software consists of about 4,000 lines of JavaScript code that run

on the user browser. This software basically collects configuration settings and

simulation parameters through its web-based user interface before using the

server-side web service to run the simulation. After the simulation process has

finished, the results dataset is parsed and formatted by the client-side

software in order to generate detailed graphic and textual reports. A crucial

part of this user interface is map navigation, which is achieved thanks to

OpenLayers.

3.7. Evaluation

In this section, we provide a system (i.e. non-functional) evaluation of the

simulator. This type of assessment is important for determining not only the

quality of the simulation system in general (Williams and Smith, 1998) but its

suitability to the target audience and the level of fulfillment of the

requirements proposed. We chose a scenario-based approach (Kazman et al.,

1996) to evaluate the simulation system, where several simulation scenarios,

offering different degrees of complexity, are proposed and the corresponding

system simulation results analysed.

These scenarios were the basis for three main types of experiments in the

evaluation. Specifically, below we provide the evaluation of the simulator from

the point of view of execution time of simulations using several ranges of

simulated time and spatial resolution. The next subsection analyses the

possible benefits of employing a sparse grid representation by the spatial

model. The third type of experiments provided by the next subsection

discusses the relationships between memory requirements in the server and

both the length of the simulated time and the spatial resolution.

Simulation Scenarios

We selected two different simulation scenarios with different degrees of

complexity in their definition:

Scenario 1: the simulation area comprises an area of about 9085 km2

(114.38 km by 79.71 km) containing a single observation of 100 adult fruit

flies at a location in the centre of the simulation area, a 56 km2 orchard with

1000 trees of 200 fruits each about 11 km east of the observation, and

another 236 km2 orchard with 2000 trees of 100 fruits each about 15 km

west. The fruits have only a season, suitable for fruit flies, and the weather

remains constant at 25.

 CRC10073 Final Report Page 16 of 26

Scenario 2: similar to Scenario 1 but in addition it contains a 164 km2 lake

about 3 km south of the observation, a large 273 km2 orchard with 50000

trees of 500 fruits each located about 40 km northeast and containing 100

eggs in its centre, two more similar orchards located 35 km east and 37 km

southeast respectively, a third group of 50 adult flies between these two

orchards, and a 1 km wide river crossing from north to south about 15 km

from the centre of the simulation area.

Execution Time

Execution time is a crucial non-function feature of a simulation system. In our

case, execution time is directly related to the non-functional requirement of

response time. We performed two different types of experiments to measure

execution time in relation to the spatio-temporal nature of the simulator: i)

measuring execution time based on how long the simulated period was, and

ii) measuring execution time based on the spatial resolution. Before each of

these experiments were executed, the Simulation Engine was reset in order to

provide a fresh start for all experiments. Of course, no other simulations were

taking place at the same time we performed these experiments.

Results of running both scenarios are reported in (Garcia Adeva and Reynolds

2011b).

The conclusions that can be drawn from these graphs are in some cases

obvious. For example, that a more complex simulation scenario will take

longer to run than a simpler scenario. There is no correlation between the

number of simulated days done and execution time due to the stochastic

nature of the simulator, while the differences are small. What may not be

obvious at first is why execution seems to become faster with time (i.e. the

curve is convex instead of concave). We believe there two element that

contribute to this effect: i) the spatial model uses a sparse representation for

grid cells which is expected to benefit longer simulated periods while shorter

periods could be penalised due to grid cell instantiation overhead; ii) the

simulation engine works on the Java Virtual Machine (JVM), which features a

technology called HotSpot that provides adaptive optimisation by dynamically

recompiling portions of a program, thus especially benefiting an algorithmic-

oriented and repetitive program like in this case.

The results indicates that the larger the resolutions the longer it will take for

the simulation to complete, with Scenario 2 always taking longer than

Scenario 1 at same spatial resolutions.

Sparse Grid

Subsections above described how the spatial aspect of the simulator is

represented by a discrete grid, and offered details on the implementation of

the model in question by using a sparse representation of cells in the grid. In

order to evaluate whether this approach is useful, we performed several

experiments. We included how many cells had to be created over 100 days

when simulating both Scenario 1 and Scenario 2 at four different spatial

resolutions (50 by 35 cells, 150 by 105 cells, 300 by 210 cells, and 450 by

314 cells) and two different scenario sizes (normal size of 114.38 km by 79.71

km and an area four times this size).

 CRC10073 Final Report Page 17 of 26

The conclusions that could be drawn from these results include the apparent

benefit of this sparse grid for large simulation areas, whereas the benefit is

modest for smaller areas.

This type of outcome can be expected when we realise that the larger the

simulation area, the more sparse its own features are. In this situation, a

sparse representation of these features fits better their natural distribution. In

contrast, the benefit is not so significant for smaller simulation areas. By

observing the graphs of results, it seems that only short simulations of up to

50 days area benefited, whereas longer simulations tend to use all the cells in

the grid anyway.

Memory

This section offers a set of simulation results with respect to memory usage in

the server hosting the simulator engine. We were interested about whether

either the length of the simulated time period or the spatial resolution had any

significant effect on server resources that could eventually affect the reliability

of the service. This consideration is important as per the requirement of

availability.

(Garcia Adeva and Reynolds 2011b) provides a graphical view of how much

memory (MB) remained available in the server after performing the simulation

of both Scenario 1 and Scenario 2 over a period of 100 days for different

spatial resolutions (50 by 35 cells, 150 by 105 cells, 300 by 210 cells, and 450

by 314 cells).

The main conclusion that we reached based on these experimental results is

that it is difficult to control available memory due to the nature of the JVM

where the simulation engine runs on. For example, there does not seem to be

a direct relationship between spatial resolution and memory usage. Similarly,

running the simulator for longer periods does not involve a trend towards

growing memory requirements. This represents a fairly positive indication in

order to achieve the requirement of scalability. However, there is a clear

indication that the more complex and long the simulation is, the more active

the JVM finds itself dealing with garbage collection (Dijkstra et al., 1978). In

particular, the spatial resolution seems to produce the most impact in garbage

collection activity. The obvious reason for this apparent relationship between

garbage collection activity and length of simulation or spatial resolution is the

huge number of memory objects being constantly created, especially by the

spatial and dispersal models of the simulation engine.

3.8. Verification and Validation

With respect to validation in ecological simulation, the ideal method would

consist of comparing results with the gold standard of high quality historical

records. However, it is very rare to find such a comparison in the natural

sciences (Sojda, 2007) and we will also not manage that high standard. This

is probably due to this area of research often revolving around vague

problems and suffering from uncertain and incomplete knowledge. We were

able to locate a dataset from an outbreak of Bactrocera fruit fly that occurred

in 1989 in Perth (Australia). The next subsection describes this event while

the subsequent subsection provides details on an empirical comparison

between the limited data that exists from the outbreak and the results of a

simulated scenario using our simulator.

 CRC10073 Final Report Page 18 of 26

Outbreak Scenario

The first incursion of Queensland fruit flies (Qfly) (i.e. B. tryoni), in Western

Australia was in February 1989. It spread rapidly throughout Perth (Bateman,

1989). The incursion was identified in tomato grown in the location of Dalkeith

and collected on 16 February 1989, to emerge on 8 March 1989. Fruit fly

numbers were highest in an area of 15 km2 surrounding the locations of

Nedlands and Claremont. The initial infestation of B. tryoni was concentrated

in an area of 15 km2 around the area Nedlands/Dalkeith, but after four

months of trapping it covering an area 100 km2, where more than 200 B.

tryoni flies had been trapped in the area (Sproul and Froudist, 1992; Yeates et

al., 1992).

An eradication program commenced in August 1989, by which time trapping

revealed the extent of the infestation to be over 125 km2 of the Perth

metropolitan area, increasing to 270 km2 by 10 December 1989 and to 300

km2 by 23 February 1990. The eradication program used three stages of

attack against this invasive pest. It incorporated a lure trapping system,

insecticide baiting and release of sterile male fruit flies. Sterile fruit fly release

started in January 1990 and continued until December of 1990 that year, after

a successful eradication.

A system of fruit surveillance started in September 1989 and continued to

June 1990. The procedure put in place had the intention of detecting new

invading propagules in the field before the adults mature (Sproul et al.,

1992).

By the time of commencement of the eradication program, trapping and fruit

monitoring showed that wild Qfly numbers and fruit infested was declining

significantly. Very few were found inside the original infested area in

December 1989 and January 1990. However, even after eradication

commenced, infestations were found outside the original zone mainly to the

north and east, but also to the south of Dalkeith. Qfly were found by August

1989 infesting Innaloo and North Perth and in September spreading north-

east along the Swan River and north of the original infestation; there was also

one found in the south at Spearwood. By the end of October 1989 the infested

area had expanded to include Doubleview, Innaloo, and the Mt

Hawthorn/North Perth and Bassendean/Bayswater regions. Infested areas in

December 1989 included Gosnells, Beckenham, Lesmurdie, South Guildford,

Coolbellup/Hilton, Nollamara, Dianella, Carine, Manning, Victoria Park, East

Victoria Park, Carlisle and Lathlain and fruit flies were found in the outer-Perth

suburbs of Greenmount, Midland and Karrinyup by January 1990. On the 26th

of January a single male fly was collected in the town of Northam,

approximately 100 km north east of Perth. Northam was declared infested and

the eradication program was extended to this area. The main concentration of

wild Qfly captures during February 1990 was between the Swan River and the

Canning River east to the airport. Fruit flies were also found outside the

known infested areas at Darlington and Armadale (Sproul et al., 1992; Yeates

et al., 1992).

The actual fruit fly detection in 1989 (Figure 4(a)) conforms to a latitude

range from 31.9 to 32.1S and a longitude range from 115.7 to 115.9 E.

Outermost examples included Wanneroo (27 km from Dalkeith), Karrinyup

(12.4 km), Warwick (15.9 km), Mount Hawthorn (7.9 km), Bassendean (16

 CRC10073 Final Report Page 19 of 26

km), Midland (23.8 km), White Gum Valley (7 km), Beckenham (16 km),

Victoria Park (10.5 km), Lesmurdie (23.1 km) and Pickering Brook (34.8 km).

However the flies dispersed in clusters and sometimes chose an aggregation

site and mating is facilitated.

-

Figure 4: Comparison of actual fruit fly detections in the 1989 Perth outbreak versus a
simulated scenario.

On 10 December 1989 the Perth area infested with Qfly had increased to 270

km2 and by 23 February 1990 it expanded to 300 km2. By this time, trapping

and fruit monitoring showed that wild Qfly numbers and fruit infested was

declining significantly. Very few flies were found inside the original infested

area between December 1989 and January 1990.

Sterile fruit flies release started in January 1990 and continued until

December that year hence ensuring a successful eradication. According to

Sproul and Froudist (1992), fruit surveillance started in September 1989 and

continued to June 1990. The procedure put in place had the intention of

detecting new invading propagules in the field before the adults mature. The

eradication program commenced in August 1989 and used three stages of

attack against this invasive pest. They used a lure trapping system, insecticide

baiting and release of sterile male fruit flies. B. tryoni was eradicated from the

Perth Metropolitan area in 1990 using pheromone traps and sterile fruit y

release (Sproul and Froudist, 1992; Fisher and Sproul,1984; Meats et al.,

2001).

Qfly was eradicated from the Perth Metropolitan area in 1990 using

pheromone traps and sterile fruit y release (Sproul and Froudist, 1992; Sproul

et al., 1992, 2001). As a result of this incident, Western Australia spent $8

million between 1989 and 1990. Since completion of the eradication program,

a small number of Qfly have been trapped, leading to several separate

incursions. Consequently, a small declared outbreak was announced in 1995

(Sproul et al., 2001).

Simulated Scenario

Figure 4 provides a visual comparison of actual events described in the

previous subsection along with the results of a simulated scenario. Figure 4(a)

 CRC10073 Final Report Page 20 of 26

contains the actual cases of fruit flies detections in traps around Perth during

the period September - November 1989. The extent of the invasion of

breeding populations of B. tryoni was revealed by trapping and fruit

surveillance before the commencement of the eradication program. Figure

4(b) corresponds to the simulation results obtained after trying to replicate

the scenario at the time.

The highest number of B. tryoni was in the area surrounding Dalkeith,

covering an area of 15 km2. This was the original area of infestation, although

later the expansion extended to 100, 125, 200 km2, and so forth. The

expanded infestation area was determined by trapping until June 1990. The

reports from the one year of monitoring program (Sproul et al., 1992; Yeates

et al., 1992) show that the B. tryoni population had survived Perth's winter

season.

In a fruit survey, where fruit yielded maggots of B. tryoni in surrounding Perth

metropolitan areas, infestations from north/western, north-eastern,

south/western and south/eastern areas. The actual fruit fly detection in 1989

(Figure 4(a)) compared with the simulated scenario (Figure 4(b)) shows a

great similarity in the range of infested area, with latitude range from -31.9 to

-32.1 and longitude range from 115.76 to 115.95. Outermost examples

included Wanneroo (27 km from Dalkieth) Karrinyup (12.4 km), Warwick

(15.9 km), Mount Hawthorn (7.9 km); Bassendean (16 km) Midland area

(23.8 km), White Gum Valley (7 km), Beckenham (16 km), Victoria Park (10.5

km), Lesmurdie (23.1 km), and Pickering Brook (34.8 km).

In order to perform a realistic simulation, the following hypothetical situation

was considered; we assumed that one fruit (e.g. loquat) was infested with

fruit flies since around the incursion area one female and six males were

caught in traps. This probably meant that a breeding population was in the

area. Hence, the incursion was established at the first location where fruit flies

were trapped (i.e. Crawley, west of the city centre and north of the river),

with a population of zero eggs, one larva, zero pupae, and seven adults. We

considered obstacles whose scores ranged from zero to one, where one is the

value for the inhospitable ocean (100% mortality), river or mountain (50%

mortality), or lake (30% mortality).

Host seasonality and orchard area were also included where quantity of fruit

trees in the area and number of fruit per tree were quantified. This included

the suitability of the fruit and ripeness and how many days there are available

(normally is considered days (e.g. 14); host suitability (e.g. excellent),

ripeness (e.g. ripe); and second options is day (e.g. seven); host suitability

(e.g. good), ripeness (e.g. over-ripe). The weather period is specified by the

temperature and number of days, days (e.g. 70), temperature (e.g. 30_C);

second option; day (e.g. 70), temperature (e.g. 20_C). The simulation area

was 52.65 km by 27.72 km, with a grid of 100 by 53 cells, which

corresponded to 1 km2 per cell. We ran the simulator for 170 to 210 days, in

order to provide enough time for population growth, establishment and final

dispersal.

The simulation showed that the infested area surrounding Crawley increased

and flies were spreading into north-western, north-eastern, south-western

and south-eastern areas in a very similar way to that which happened in

1989. Also, even when the weather period, specified by the temperature and

period of days, was changed from 70 days, 30_C temperature to the second

option of 70 days, 20_C temperature, or with an extra cold period added e.g.

30 days and 18_C temperature, the dispersal gave a similar picture about how

 CRC10073 Final Report Page 21 of 26

B. tryoni would spread.

These results tend to confirm what one would expect during an outbreak. The

population parameters used relate to average climatic conditions prevailing

during the normal infestation period. It should not be used outside the normal

period of Q-y occurrence. In its native range overwintering adult flies become

active in August, and by late summer to early autumn the flies are present in

high populations (Ayling, 1989). Further calibration and verification would be

needed, and possibly different modelling techniques. Fletcher (1973) has for

instance indicated that B. tryoni has a tendency to congregate in well-wooded

locations along creeks and rivers. Marked flies were also more frequently

caught in traps in gardens and suburban areas than in non-cultivated areas

the same distance from the orchard. The authors accept that a more

sophisticated approach may be followed in another year or ten years, but will

settle for going somewhere towards addressing some aspects now.

In summary, we believe that the simulator offered a sensible answer to the

question that had been posed prior to this incursion. We believe that it served

its purpose in that the simulation should be able to provide spatial and time

spread information in order to enable a rapid response to an incursion,

specifically showing where it are would or could spread, how fast it would

spread and the area of spread if the option is to do nothing.

3.9. References

 Ayling, G. (1989). The Queensland fruit fly eradication campaign. Western

Australia Journal of Agriculture, (30):159-162.
 Banerjee, S. (2004). Revisiting spherical trigonometry with orthogonal projectors.

The Mathematical Association of America's College Mathematics Journal, 357:375-
381.

 Bateman, M. A. (1989). Eradication Strategy of an invading population of

Queensland fruit in suburban Perth. Technical report.

 Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The Unified Modelling Language
User Guide. Addison-Wesley, Reading, MA, USA.

 Dijkstra, E. W., Lamport, L., Martin, A., Scholten, C., and Ste_ens, E. F. M. (1978).
On the-fly garbage collection: an exercise in cooperation. Commun. ACM, 21:966-
975.

 Fisher, K. T. and Sproul, A. N. (1984). The methodology for the sterile insect
technique against the Mediterranean fruit y in Western Australia. In Proceedings of

the 4th Australia Appl. Ent. Res. Conf., pages 12-20.
 Fletcher, B. S. (1973). The ecology of a natural population of the Queensland fruit

fly, Dacus tryoni. iv. the immigration and emigration of adults. Australian Journal
of Zoology, 21:541-565.

 Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

 Garcia Adeva, J., Botha, J., and Reynolds, M. (2011a). A Simulation Modelling
Approach to Forecast Establishment and Spread of Bactrocera Fruit Flies. Ecological

Modelling. In Press.
 J. J. Garcia Adeva and M. Reynolds. (2011 b) “Web-based Simulation of Fruit Fly to

Support Biosecurity Decision-Making”, submitted.
 Garland, J. and Anthony, R. (2003). Large-Scale Software Architecture. Wiley.

 Goodwin, B. J., Jones, C. G., Schauber, E. M., and Ostfeld, R. S. (2005). Limited
dispersal and heterogeneous predation risk synergistically enhance persistence of
rare prey. Ecology, 12:3139-3148.

 Haines, E. (1994). Graphics Gems IV, chapter Point in Polygon Strategies. Morgan
Kaufmann.

 Hurrion, R. (1976). The design, use and required facilities of an interactive visual

 CRC10073 Final Report Page 22 of 26

computer simulation language to explore production planning problems. PhD

thesis, University of London.
 Kachitvichyanukul, V. and Schmeiser, B. W. (1988). Binomial random variate

generation. Commun. ACM, 31:216-222.

 Kazman, R., Abowd, G., Bass, L., and Clements, P. (1996). Scenario-based
Analysis of Software Architecture. IEEE Software, 13(6):47-55.

 Meats, A. W., Clift, A. D., and Robson, M. K. (2001). Technical assessment of fruit
fly outbreaks and suspension zones for Medy and B. tryoni in Australia. Technical
report.

 O'Keefe and Robert, M. (1987). What is visual interactive simulation? (and is there
a methodology for doing it right?). In Proceedings of the 19th Conference on

Winter Simulation, WSC '87, pages 461-464, New York, NY, USA. ACM.
 Sojda, R. (2007). Empirical evaluation of decision support systems: Needs,

definitions, potential methods, and an example pertaining to waterfowl
management. Environmental Modelling and Software, 22(2):269-277.

 Sproul, A. N. and Froudist, S. (1992). Fruit Surveillance for Qfly. Technical report.
 Sproul, A. N., Broughton, S., and Monzu, N. (1992). Queensland fruit fly

eradication campaign. Technical report.

 Sproul, A. N., Broughton, S., De Lima, F., Hardie, D., Monzu, N., and Woods, B.
(2001). The fight against fruit flies in Western Australia. Technical Report 4504.

 Williams, L. G. and Smith, C. U. (1998). Performance evaluation of software
architectures. In Proceedings of the 1st International Workshop on Software and
Performance, pages 164-177. ACM.

 Xie, H. and D., Y. P. (2006). Developing a Web-based System for Large-Scale

Environmental Hydraulics Problems with Application to Oil Spill Modeling. Journal of
computing in civil engineering, 20(3):197-209.

 Yeates, D. K., Yeoh, P. B., and Rechichi, S. N. (1992). Trap monitoring for B. tryoni
in Queensland fruit fly eradication campaign. Technical report.

4. Implications for stakeholders

The main implication for stakeholders is that this project has successfully demonstrated a

‘proof of concept’ of a fast, flexible, usable simulator to allow real-time prediction of the

likely outcomes of real or hypothetical EPP outbreaks. This allows biosecurity emergency

response managers to quickly get an idea of the likely speed and extent of an outbreak

and to ‘play’ with alternative biosecurity responses.

For developers of alternative, or follow-on EPP simulation software, the project

demonstrates real-time simulation via a convenient web-based architecture. Calculations

are done for any user with any computing device using the latest version of the simulation

software on quick and powerful servers with access to local land-use data.

The underlying models use the current best insect and disease models but are flexible in

allowing parameters to be set by local experts. The software has been ‘personalised’ to

several example EPPs and a match of prediction with historical outbreak data has been

achieved.

The main implication is that this pathway of robust, easily extensible general simulators,

accessed via a web-server architecture is a very viable option for future development.

5. Recommendations

Recommendations based on this research fall into three categories: 1) potential users to

take up opportunities opened up by the developments here; 2) suggestions for further

 CRC10073 Final Report Page 23 of 26

development of the tools and techniques here; and 3) more general lessons for

biosecurity.

Under the first heading we have seen that the techniques in simulator development

undertaken here have provided a proof of concept for a flexible, usable EPP spread

prediction tool framework. Efforts should be made to explore ways of improving awareness

of the availability of such tools amongst potential users. However, it must be emphasized

that the products of this project are not quite ready to be used in the field as they are

now.

Thus, under the second heading, we can collect suggestions for polishing the tools for field

use in the near future as well as a large number of specific improvements and extensions

that we have already noted. Field trials of the tools during actual outbreaks are required as

is the collection of more general feedback on new functionality and usability issues.

Decisions about how to run the server and maintain the software and/or about

commercialisation need to be made.

Further development of the simulation technology include ‘personalising’ it to more pests.

Other possibly desirable developments are to adapt it properly for running on mobile

phones and tablets, to better support a ‘war game’ type of simulation where parameters

can be changed at intermediate stages, more robust import of needed land-use and

weather data from known internet sources, and extensions to cover Asian neighbour

countries.

Under the final category we include a recommendation for further research into data for

validation or verification of simulators. Details of trap data over time, as well as detailed

accounts of land use, weather patterns, human activity during outbreaks need to be

collected and made available in a publicly usable way. Our validation activities were

certainly hampered by the sketchiness of such data.

6. Abbreviations/glossary

ABBREVIATION FULL TITLE

CRCNPB Cooperative Research Centre for National Plant

Biosecurity

EPP Emergency plant pest

UWA The University of Western Australia

DAFWA WA State Government Department of Agriculture and

Fisheries

CSSE School of Computer Science and Software Engineering

(at UWA)

Qfly Queensland fruit fly

JVM Java Virtual Machine (runs Java programs)

7. Plain English website summary

CRC project no: CRC10073

 CRC10073 Final Report Page 24 of 26

Project title: Surveillance Simulation Platform

Project leader: Professor Mark Reynolds

Project team: UWA CSSE:

Mark Reynolds,

Juan Jose Garcia Adeva,

DAFWA:

Darryl Hardie,

John Botha,

Maria Majer

Research outcomes: ▪ A surveillance prediction simulation platform for

validating surveillance strategies;

▪ novel landscape-level modelling techniques for pest

spread simulation; and

▪ validated simulation technology using historical

emergency plant pest incursion data.

Research implications: This pathway of robust, easily extensible general EPP

simulators, accessed via a web-server architecture is a very

viable option for future development, commercialisation

and/or roll-out.

Research publications:
Press

▪ Simulator will aid in pest defence. Good Fruit & Vegetables,

November, 2010.

▪ Pest scenarios test responses

▪ Simulator to aid protection from exotic plant pests

▪ Spreading the collaboration

▪ From storage to export: learning about the grain supply

chain

Conferences

▪ 'Awareness of the Asian Gypsy Moth: a Threat to Australia's

Eucalyptus Plantations and a Concern for Restoration

Programs', SERI World conference on Ecological

Restoration, Perth, 2009.

▪ 'Modelling establishment and spread potential of Bactrocera

fruit flies: Australian concerns for a surveillance

program', Australian Entomological Society, Darwin,

2009.

▪ 'Development of a Surveillance Simulation Platform for

establishment and spread of EPPs: examining

Australian concerns', Australian Entomological

https://bug.csse.uwa.edu.au/images/e/e4/Good_Fruit_and_Vegetables.pdf
https://bug.csse.uwa.edu.au/images/8/82/Pest_outbreak_scenarios_test_responses.pdf
http://www.agric.wa.gov.au/PC_94228.html
http://www.crcplantbiosecurity.com.au/content/spreading-collaboration
http://www.crcplantbiosecurity.com.au/content/storage-export-learning-about-grain-supply-chain
http://www.crcplantbiosecurity.com.au/content/storage-export-learning-about-grain-supply-chain
https://bug.csse.uwa.edu.au/images/f/fd/SERI_Abstract.pdf
https://bug.csse.uwa.edu.au/images/f/fd/SERI_Abstract.pdf
https://bug.csse.uwa.edu.au/images/f/fd/SERI_Abstract.pdf
https://bug.csse.uwa.edu.au/images/a/a7/Bactrocera_abstract_2009.pdf
https://bug.csse.uwa.edu.au/images/a/a7/Bactrocera_abstract_2009.pdf
https://bug.csse.uwa.edu.au/images/a/a7/Bactrocera_abstract_2009.pdf
https://bug.csse.uwa.edu.au/images/9/97/EPPs_abstract_2009.pdf
https://bug.csse.uwa.edu.au/images/9/97/EPPs_abstract_2009.pdf
https://bug.csse.uwa.edu.au/images/9/97/EPPs_abstract_2009.pdf

 CRC10073 Final Report Page 25 of 26

Society, Darwin, 2009.

▪ 'Modelling the establishment and spread of emergency

plant pests (EPPs) in Australia: simulate or suffer',

Global Biosecurity, Brisbane, 2010.

▪ 'Modelling the spread of fire blight', Global Biosecurity,

Brisbane, 2010.

▪ 'Simulation technology to predict the establishment and

spread of Asian gypsy moth, Lymantria dispar

asiatica', Australian Entomological Society, Perth,

2010.

▪ 'Simulation of Honeybee Nectar Foraging for Determining

Effects on Local Flora', Modelling and Simulation

Society of Australia and New Zealand, Perth, 2011.

Journals

▪ 'Modelling establishment and spread potential of

Trogoderma granarium Everts: Australian concerns for

a surveillance program', Resistant Pest Management

Newsletter, Vol. 18, No. 2, pp. 4 - 6, Spring 2009.

▪ 'A Simulation Modelling Approach to Forecast Establishment

and Spread of Bactrocera Fruit Flies', Ecological

Modelling, accepted 2011 in press.

RECENT SUBMISSIONS under REVIEW

 Threat of Asian gypsy moth, Lymantria dispar (L.)

(asiatica and japonica) to Australia: Motivation for
developing simulation technology. (Being updated for
resubmission, Dec 2011)

 Web-based Simulation of Fruit Fly to Support

Biosecurity Decision-Making. (Submitted to Ecological
Informatics June 2011)

 Simulation Modelling of Nectar and Pollen Foraging by

Honeybees. (Submitted to Biosystems Engineering

September 2011)

 Web-based Simulation of Nectar and Pollen Foraging
by Honeybees. (To be submitted to Decision Support
Systems, Dec 2011)

Acknowledgements:
The research team acknowledges the CRC for National Plant
Biosecurity (CRCNPB) for provisions of funding for this
project.

https://bug.csse.uwa.edu.au/images/1/1a/EPPs_abstract_2010.pdf
https://bug.csse.uwa.edu.au/images/1/1a/EPPs_abstract_2010.pdf
https://bug.csse.uwa.edu.au/images/6/61/Fireblight_abstract_2010.pdf
https://bug.csse.uwa.edu.au/images/8/89/Gypsy_Moth_Abstract_2010.pdf
https://bug.csse.uwa.edu.au/images/8/89/Gypsy_Moth_Abstract_2010.pdf
https://bug.csse.uwa.edu.au/images/8/89/Gypsy_Moth_Abstract_2010.pdf
https://bug.csse.uwa.edu.au/images/c/cd/Modsim.pdf
https://bug.csse.uwa.edu.au/images/c/cd/Modsim.pdf
https://bug.csse.uwa.edu.au/images/2/2b/EPPs_abstract.pdf
https://bug.csse.uwa.edu.au/images/2/2b/EPPs_abstract.pdf
https://bug.csse.uwa.edu.au/images/2/2b/EPPs_abstract.pdf
https://bug.csse.uwa.edu.au/images/4/40/Ecomod.pdf
https://bug.csse.uwa.edu.au/images/4/40/Ecomod.pdf
http://www.elsevier.com/wps/find/journaldescription.cws_home/503306/description
http://www.elsevier.com/wps/find/journaldescription.cws_home/503306/description

 CRC10073 Final Report Page 26 of 26

The research team also expresses sincere thanks to many
other researchers at UWA, DAFWA and CSIRO who have

assisted with knowledge of the behavior of many pest species
and with advice and feedback about the usability of the
system.

