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1. Executive Summary 

 

Biosecurity plays a key role in the economic viability of the plant-based industries 

of countries like Australia. Plant pests and diseases can have devastating effects 

on food safety, trade, market access, market development and, ultimately, the 

profitability and sustainability of plant industries. Incursion and outbreak 

management are key aspects to biosecurity. As soon as an incursion of plant pest 

or disease is detected and reported to the appropriate authorities, biosecurity 

managers have to apply control mechanisms in order to avoid it from spreading. 

Currently, researchers provide biosecurity managers with biological parameters 

about the pest or disease on host range, mode of spread, and potential 

distribution based on climatic factors. However, strategies to test pre-emptive 

surveillance and estimate rates of spread in a spatial environment in real time are 

not available.  

 

In CRC10073, we have developed a 'what if' scenario simulation tool to address 

this shortcoming. 

The project milestones haven successfully achieved: a generic simulator 

framework is in operation, specific versions for a range of particular example 

pests and diseases have been demonstrated, validation against actual incursion 

data has been piloted, details of design and validation have been published and a 

robust and useful graphical interface has been successfully demonstrated to 

potential users from DAFWA and DAFF (Federal). The current production of the 

project consists of a large pool of technological artefacts including computer 

infrastructure, support services, three simulation prototypes (i.e. Fruit fly, Fire 

blight, and Gypsy moth), and a generic software application framework. 

These outcomes concur with the original project objectives, by offering the 

potential to analyse and map the habitat and incursion and also the speed and 

spread of the invasive pest, thus providing a valuable tool for the industry and 

also saving money and time (timing is one factor that is extremely important for 

implementation of an eradication program). 

The project members have published seven conference publications, five press 

releases, and six journal papers have been published, are currently under review 

or are in the process of being submitted. 

 
 

2. Aims and objectives 

Aim: to produce a simulation platform to estimate rates and patterns of spread of 

plant diseases and pests and the time-changing extent over the landscape. It has 

to provide plant pest outbreak decision makers with suitable computer tools to 

support their decision process. 

Objectives: 

 To develop a generic simulation model and toolset to predict spread of 

Emergency Plant Pest (EPP) high-risk species. 

 To use this to identify high-risk locations for various EPPs. 

 To validate the technology and develop methodologies for its effective 

usage via replication of well-documented, historic outbreaks. 
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 Will provide Biosecurity scientists and managers with a real-time 

interactive surveillance risk analysis tool. 

 

The main outcomes of the project are: 

▪ a surveillance prediction simulation platform for validating surveillance 

strategies 

▪ novel landscape-level modelling techniques for pest spread simulation, and 

▪ validated simulation technology using historical emergency plant pest 

incursion data. 

 

Beneficiaries: 

The primary end-users of the tool are pest/disease outbreak managers. The 

convenient user-friendly, robust and flexible interface to a real-time simulator 

means that managers can quickly try a range of hypothetical containment 

strategies and see the likely effects on the outbreak. 

The completely portable web-based access means that the calculations are 

carried out on the powerful servers rather than the users’ computers. They will 

need no special hardware or software. The web-server based technology also 

means that extensions, upgrades and maintenance of the software can be carried 

out without any need for access to or interference with the computing devices of 

any of the end-users. 

Other end-users include Biosecurity scientists and researchers needing general, 

flexible and robust modelling tools and frameworks. The system allows important 

parameters governing the spread of particular pests to be easily adjusted, if 

desired, depending on the latest advice of local experts. 

The general framework of the simulator is designed to allow rapid 

‘personalisation’ to novel pests and diseases. The modular re-usable design and 

use of the popular Java programming language and well-documented 

implementation means upgrades to allow modelling of new pests can be quickly 

installed. 

These outcomes concur with the original project objectives, by offering the 

potential to analyse and map the habitat and incursion and also the speed and 

spread of the invasive pest, thus providing a valuable tool for the industry and 

also saving money and time (timing is one factor that is extremely important for 

implementation of an eradication program). 

 

Finally, the project members have published seven conference publications, five 

press releases, and had six journal papers accepted, currently under revision or in 

the process of being submitted. These contain a range of lessons and evidence for 
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developers of other simulation software. The lessons include entomology, 

mathematical modelling and software engineering aspects. The applications range 

from plant pest modelling, to animal biosecurity, ecology and human health. 

 

3. Key findings 

 

The main outcomes of the project are: 

▪ A surveillance prediction simulation platform for validating surveillance 

strategies. 

▪ Novel landscape-level modelling techniques for pest spread simulation. 

▪ Validated simulation technology using historical emergency plant pest 

incursion data. 

The outputs are thus not primarily ‘findings’, but the development of tools and 

techniques. These are described in detail in the main publications of the project 

(see list later) as well as in technical reports and our wikis (access granted by 

request to authors). 

Here we will, using material from the publications, summarize the main features 

of the tools and techniques under the following headings: 

 Pests covered 

 Generic Simulator Framework 

 Modelling Modules 

 Interface and Main Functionality 

 Development Environment 

 Technology 

 Evaluation  

 Validation 

An account of the details of our decisions and experiments in designing, 

implementing and testing the software is thus presented as our ‘findings’. This 

account will be useful for those using the tools and those building on them in 

follow-on work. 

3.1. Pests Covered 

The simulator is engineered to be able to be conveniently modified to work for 

a wide variety of EPPs, but as part of the process of development and in order 

to have concrete demonstrations of the technology, we have released specific 

versions for the following three EPPs of major concern: 

 Queensland Fruit Fly (bactrocera tryoni) 

 Asian Gypsy Moth (Lymantria dispar), and 

 Fire blight (Erwinia amylovora). 
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These three simulators are accessible and conveniently usable online from our 

servers for interested researchers. Please contact the authors for access and 

instructions. 

3.2. Generic Simulator Framework 

Because we aimed at providing a framework allowing fast and convenient 

production of simulators for other insects and other EPPs in the future, the 

code base is modularized and organised in appropriate layers to facilitate their 

reuse, modification and/or replacement.  

 

Some modules, such as those supporting the spatial model, differ very little 

among different simulators. Other modules, such as those managing user 

interfaces, are deliberately very similar across EPPs but need certain 

differences. Yet other modules are completely different and may even be 

absent from some simulators because there are differences in the 

mechanisms of spread across the EPPs.  

 

Another factor for our design was that the simulator source code should allow 

extending certain modules such as the dispersal mechanisms to accommodate 

different expert opinions and expertise. 

 

We considered that an important concept, related to software modelling 

techniques, that could facilitate the practice of reusability in this work is 

design patterns. A design pattern `is a common solution to a common 

problem in a given context' (Booch et al., 1999). They describe common 

analysis and design fragments in order for them to be reused (Gamma et al., 

1995). Design patterns are increasingly becoming the building blocks for 

reusable components, hence allowing architects and designers to have more 

control over the quality and consistency of the final implementation (Garland 

and Anthony, 2003) 
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Figure 1: General Architecture of the Simulator 

3.3. Modelling Modules 

The simulation model implemented by the Simulation Engine includes several 

underlying deterministic or stochastic models that include:  

 spatial model 

 life-cycle model  

 host seasonality model  

 weather model, and  

 dispersal model.  

 

Full details of all modules are available in our publications but here is a brief 

description of the spatial model and the dispersal model respectively, focusing 

on key aspects of their implementation. 

 

The relationship between the models is set out on Figure 2. 
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Figure 2: Conceptual diagram of the simulation model and its related models. 

 

Spatial Model 

 
The spatial model represents the two-dimensional simulation area and the key 

elements contained within it. This section describes those implementation 

aspects of the spatial model which are important to fulfill the requirements. 

 

The simulation area consists of a landscape whose bounds are initially defined 

by the user through the simulator's user interface. Figure 3 serves as an 

example screenshot of the simulator when selecting a map area where to 

perform the simulation. The extent will usually vary from a few hectares to 

several hundred thousand km2 (e.g. typical simulations will happen in areas 

of up to 500 km by 300 km). The landscape can contain areas (i.e. polygons) 

representing an obstacle (e.g. a water body or a desert), illustrated by the 

dark area in Figure 3. Areas representing suitable habitat for fruit flies (e.g. 

an orchard) are depicted as shown by the two yellow areas in Figure 3. Other 

features such as roads, building areas, rivers, oceans, etc. are also 

represented. The landscape will typically contain at least one observation 

indicating the incursion to study, which the blue marker shown in Figure 3 

represents. This landscape is represented as a rectangular planar region. The 

landscape boundaries, given by two global coordinates that correspond to the 

bottom-left and top-right corners of the extent, remain constant once the 

simulation area has been selected by the user. Discretisation of this landscape 

is performed by means of a rectangular sparse grid, where the number of 

horizontal cells indicates the spatial resolution and is selected by the user 
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through the horizontal slider shown in Figure 3. The number of vertical cells 

and cell size are calculated based on this user-defined horizontal resolution. 

 

The calculation used to determine the cell corresponding to a global co-

ordinate applies the Spherical Law of Cosines (Banerjee, 2004) to calculate 

the horizontal and vertical distances from the bound bottom-left and top-right 

coordinates of the simulation viewing area. This is then divided by the number 

of cells in each dimension. The advantage of this grid configuration is that it 

resembles a raster image. Therefore, there is a plethora of algorithms from 

the area of computer graphics to take advantage of. Consequently, an area 

representing an orchard or an obstacle is expressed as a closed polygon 

defined by the list of its ordered (either clockwise or counterclockwise) vertex 

coordinates, each of them is converted to its corresponding cell. Frequent 

operations include calculating the extend of areas, achieved by using 

Euclidean geometry such as Meister's formula, and determining whether a 

particular cell is included within an area, which is accomplished by applying 

the Jordan curve theorem as proposed by Haines (1994). 

 

However, the most distinctive feature of our spatial model is its sparse 

representation, where only those non-empty cells are created dynamically as 

needed. This reduces significantly initialization time, contributes to a much 

more flexible use of the computer memory, and improves execution time by 

ignoring most empty cells. Besides, those cells that become vacant (i.e. those 

not containing any more individuals) can be discarded when the memory 

resources become scarce, until they have to be created again if circumstances 

arise. 

Dispersal Model 

 
This stochastic model represents the ability of fruit flies to fly in order to find 

new habitats or resources, hence contributing to the stabilisation of their 

population when predation or lack of food would cause local extinctions 

(Goodwin et al., 2005). 

 

From an initial population of fruit flies at a known location, the dispersal model 

aims to determine: 

i) the speed at which this population will spread over the full extent of 

suitable environment available, and  

ii) the distance range that this population will cover.  

Therefore, given a cell in the grid containing individuals, this model 

determines how many of these individuals disperse and into which 

destinations. Dispersal is triggered by a combination of circumstances such as 

population density, food suitability at the individual location and surrounding 

areas. The model also considers dispersal barriers representing natural 

features such as mountain ranges, rivers, lakes, deserts, etc. Consequently, 

barriers will influence dispersal by limiting the spatial range of those fruit  flies  

flying in certain directions or landing in certain areas. Also, dispersal is 

strongly influenced by population growth, regardless of whether this growth 

happens through reproduction or migration. 

 

The dispersal distance and number of individuals dispersing at each distance 

is defined by a dispersal kernel, which describes the spatial distribution of 

propagules in the vicinity as a function of distance from the dispersing location 

(Garcia Adeva et al., 2011a). This kernel is based on two empirical probability 

distributions that allow determination of dispersal distance and direction 

respectively. The practical process of dispersal is based on the spatial model 

with the grid that represents the simulation area containing at least one cell 
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with a number of dispersing fruit flies. For example, the blue dot in the centre 

of Figure 2 represents the dispersing fruit flies (i.e. propagules). The distance 

range between 0.5 and 2 km is represented by the black ring. The size of this 

ring and the probability of the propagule population dispersing within it is 

drawn from the empirical probability distribution representing dispersal 

distances as part of the dispersal kernel. All the cells included in the ring are 

possible destinations for propagules, with those two containing hosts in grey. 

The probability of these hosts being detected by the subset of propagules 

dispersing within this distance range is determined by the second empirical 

probability distribution of the dispersal kernel. Those  flies that do not detect a 

host will choose a random direction. 

 

The practical implementation of this process is as follows:  

i) all the cells within the ring are selected in a list  

ii) this list of cells is randomly shuffled 

iii) those cells containing a host are moved to the head of the list if the 

result of applying a Bernoulli random variate (Kachitvichyanukul 

and Schmeiser, 1988) results in one, and  

iv) propagules are distributed throughout the list.  

In the case where the number of propagules is smaller than the number of 

destinations (i.e. size of the cell list), propagules are clustered.  

 

3.4. Interface and Main Features 

 
This section enumerates and briefly discusses the key features of the system 

produced, based on the specifications proposed, the architectural design, and our 

multiple implementation decisions. 

 

 The simulation time resolution is one day. This decision was made due to 

the fact that the vast majority of available expert knowledge uses one day 

as the time step. 

 

 The current user interface is web-based. This decision tackles especially 

the requirements of Availability. There are several advantages to web-

based simulation over a regular local software approach (Xie and D., 

2006). The simulation processes are performed in several (computer) 

servers hosted remotely and managed and maintained by the technical 

members of the project, while users access the simulator as a regular web 

application. This method offers many interesting advantages over the 

traditional desktop application approach: i) the simulator can deal with 

large amounts of data regardless of how powerful the user computer is, ii) 

no installation is required by users, the simulation models can be modified 

or updated without having to redistribute new copies of the software to 

users, and iii) access to the simulator can be controlled, adapted, or 

restricted if necessary. 

 

 The simulator offers spatial features to provide users with a better 

understanding of the scale, extend, and location of dispersal over an 

actual landscape. The web-based interface includes an embedded map of 

Australia containing multiple selectable layers representing water bodies, 

roads and railways, places, suitable areas, and obstacles to spread. The 

simulation area and spatial resolution can be easily set by the user in 

order to determine a suitable balance between expected precision and 

time constraints during execution. Figure 3 depicts an arbitrary example of 

the web user interface after defining a simulation scenario located in an 



 CRC10073 Final Report Page 12 of 26 

 

urban area. It shows how the embedded mapping tool includes the 

expected features of commercial systems such as zooming to select the 

area size, filtering layers, and choosing the resolution. By offering our own 

web mapping system, we contribute towards fulfilling the requirement of 

independence. 
 

 
Figure 3: Example of web-based user interface in an arbitrary location in Perth (Australia) 
with two orchards in yellow, and obstacle in grey, and an observation. 

 

 Performing a simulation results in an extensive report that contains all the 

details provided by the simulator, thus fulfilling the requirement of 

interactivity. The report is organised by sections, each one corresponding 

to one simulated day. For each day, the user can inspect: i) how weather 

has changed in the simulation area; ii) how the total fruit population has 

changed, grouped by y stages (eggs, larvae, pupae, and adults); iii) what 

locations have been affected by fruit y dispersal; and iv) how population 

has changed, grouped by stages, for each of the locations containing flies 

at any given time. The report also contains system information including: 

i) how many cells of the grid representing the simulation area have been 

used by day, ii) the length of time taken for the simulator to process each 

day, and iii) how much RAM the server used. Each of these results are 

provided visually graphically, and as tabular data. Moreover, they can be 

exported using the well-supported comma-separated values (CSV) format 

so that it can be easily imported into popular spreadsheet or data analysis 

applications. 

 

 The simulator follows the Visual Interactive Simulation (VIS) paradigm 

(Hurrion, 1976; O'Keefe and Robert, 1987), implying that simulation 

processes occur as an animation on a visual display and the user can 

interact with the running model. The user can examine the simulation at 
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any particular day and location obtaining a detailed graphical and tabular 

account. The user can make alterations to the model parameters and 

examine the new results. The benefits include i) easier verification and 

validation, ii) better understanding of the results, iii) more accurate 

communication of findings to other parties, and iv) potential to use the 

simulation with a group for decision making. 

 

 It is clear that different fruit y experts sometimes differ on minor aspects 

of the insect behaviour; for example ranges of dispersal, oviposition, or 

host preferences. The underlying models can be adjusted through the user 

interface (i.e. the source code does not have to be altered) to reconcile 

multiple feedback from experts. In the current version, the model 

configuration is focused on settings affecting aspects of the Bactrocera 

fruit y life cycle such as male/fame ratio, average number of eggs laid per 

day, etc. 

 

 The simulation is in real time. There are multiple definitions for what real-

time simulation means. We consider real-time simulation to consist of 

fulfilling the conditions: i) given the same set of input parameters, multiple 

simulations would take approximately the same time to complete, hence 

providing a certain expectation with regards to time scale, and the time to 

complete a simulation will be equal or less than the simulated time. 

 

 The simulator allows saving the parameters that define a simulation 

scenario for further reuse or sharing.  
 

 

3.5. Development Environment 

 

To design a robust and flexible piece of software that is amenable to future 

extension in the most convenient way, it was essential to have a supportive 

development environment allowing the careful control of collaboration, version 

control and testing. 

 

The work environment consists of a collection of processes and software 

development tools, utilised and shared by all the team members, in order to 

work collaboratively towards a set of common goals to create the final 

software product, which in this case it is the simulation platform prototype. 

 

There are several reasons why we consider a formal work environment 

necessary as part of the development strategy: i) it contributes to maximise 

programmer productivity thanks to its tools, ii) it reduces work overlap by 

improving communication and reuse of resources, iii) it simplifies the 

documentation process by providing much detailed and interrelated 

information during the development process. 

 

We implemented the work environment as a three-tier scheme that includes 

the following tiers: 

 

 Development: a typical development environment will comprise of a 

version control system (also known as revision control or source 

control system), a project management panel, an error tracking 

facility, flexible documentation tools, build cycle, and automatic 

documentation generation, all of them integrated. The Software 

Engineers working on the project will have access to all the features of 

this environment, while some users might have restricted access (e.g. 
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error tracking for users supporting the verification or validation 

efforts). 

 

 Staging: it keeps the most recent version of the simulation for testing 

purposes, before it is deployed to the production environment. 

Although this tier comprises an environment that should be as identical 

as possible to the production environment, in cases of limited 

resources then it could be less powerful than the production instance. 

There will usually be a Software Engineer acting as Release Manager, 

who should take care of updating this staging environment when an 

appropriate number of changes have taken place to the source code 

base. Users such as biosecurity managers involved in the project and 

who are contributing to the verification or validation effort of the 

simulation models will use a version of the simulator hosted in this 

staging environment. 

 

 Production: it keeps the latest stable version of the simulation. Most 

users will be provided with access to the simulator hosted in this 

environment. The Release Manager will be responsible for updating this 

environment when the simulator version in the staging environment is 

considered to be stable. 

 

These tiers are referred to as environments instead of servers. While it is 

possible for multiple environments to be hosted by the same physical 

machine, it is usually preferable to avoid this practice, in particular with 

regards to the production environment, which should be by itself and not 

shared with any of the other environments. 

3.6. Technology 

This section covers the technology employed by the project or generated as a 

result. The implementation of this simulation system involved working on 

three main types of components: 

i) system infrastructure 

ii) server-side software  

iii) client-side software. 

 

The system infrastructure consists of four servers, all based on Linux 2.6.32:  

i) development environment that controls the development tools such as 

project management, version control, bug tracking, automatic build cycle, and 

documentation 

ii) staging environment, which keeps the latest version of the simulation for 

testing purposes  

iii) production environment that hosts the latest stable version of the 

simulator, and  

iv) map server that provides extensive mapping capabilities for Australia.  

 

These servers are VMWare virtual machines running on commodity hardware. 

This type of virtualised environment offers great especially demand-driven 

allocation of resources, at the expense of a small performance loss. The 

support software used in these servers is mostly open source. The web server 

used by the four servers is the well-established Apache Project management 

is provided by Trac while Subversion makes possible source version control. 

Project documentation is wiki-based through MediaWiki. The map server offers 

a WMF service through Geoserver and Geowebcache. Most of the layers used 

for the map of Australia were obtained from the Open-StreetMap thanks to 

their Creative Commons Licence and are stored by the geographical database 
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PostGIS. 

 

The server-side software corresponds to the implementation of the simulation 

model described above. This software was written from scratch, its source 

code resulting in about 16,000 lines. The choice of language was Java 1.6 due 

to the adequate features of the language but more importantly the extensive 

number of support tools and associated technologies available both 

commercially and freely. The simulation model is implemented as a Web 

service that receives its configuration settings and simulation parameters as 

an input and returns a dataset of results. This web service runs within the 

context of the Web container Caucho Resin, which in turn sits on top of 

Apache. Handling of web request parameters is supported by the Model View 

Controller Web application framework Stripes. 

 

Client-side software consists of about 4,000 lines of JavaScript code that run 

on the user browser. This software basically collects configuration settings and 

simulation parameters through its web-based user interface before using the 

server-side web service to run the simulation. After the simulation process has 

finished, the results dataset is parsed and formatted by the client-side 

software in order to generate detailed graphic and textual reports. A crucial 

part of this user interface is map navigation, which is achieved thanks to 

OpenLayers. 

3.7. Evaluation  

In this section, we provide a system (i.e. non-functional) evaluation of the 

simulator. This type of assessment is important for determining not only the 

quality of the simulation system in general (Williams and Smith, 1998) but its 

suitability to the target audience and the level of fulfillment of the 

requirements proposed. We chose a scenario-based approach (Kazman et al., 

1996) to evaluate the simulation system, where several simulation scenarios, 

offering different degrees of complexity, are proposed and the corresponding 

system simulation results analysed. 

 

These scenarios were the basis for three main types of experiments in the 

evaluation. Specifically, below we provide the evaluation of the simulator from 

the point of view of execution time of simulations using several ranges of 

simulated time and spatial resolution. The next subsection analyses the 

possible benefits of employing a sparse grid representation by the spatial 

model. The third type of experiments provided by the next subsection 

discusses the relationships between memory requirements in the server and 

both the length of the simulated time and the spatial resolution. 

 

Simulation Scenarios 

 
We selected two different simulation scenarios with different degrees of 

complexity in their definition: 

 

Scenario 1: the simulation area comprises an area of about 9085 km2 

(114.38 km by 79.71 km) containing a single observation of 100 adult fruit 

flies at a location in the centre of the simulation area, a 56 km2 orchard with 

1000 trees of 200 fruits each about 11 km east of the observation, and 

another 236 km2 orchard with 2000 trees of 100 fruits each about 15 km 

west. The fruits have only a season, suitable for fruit flies, and the weather 

remains constant at 25. 
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Scenario 2: similar to Scenario 1 but in addition it contains a 164 km2 lake 

about 3 km south of the observation, a large 273 km2 orchard with 50000 

trees of 500 fruits each located about 40 km northeast and containing 100 

eggs in its centre, two more similar orchards located 35 km east and 37 km 

southeast respectively, a third group of 50 adult flies between these two 

orchards, and a 1 km wide river crossing from north to south about 15 km 

from the centre of the simulation area. 

 

Execution Time 

 
Execution time is a crucial non-function feature of a simulation system. In our 

case, execution time is directly related to the non-functional requirement of 

response time. We performed two different types of experiments to measure 

execution time in relation to the spatio-temporal nature of the simulator: i) 

measuring execution time based on how long the simulated period was, and 

ii) measuring execution time based on the spatial resolution. Before each of 

these experiments were executed, the Simulation Engine was reset in order to 

provide a fresh start for all experiments. Of course, no other simulations were 

taking place at the same time we performed these experiments. 

 

Results of running both scenarios are reported in (Garcia Adeva and Reynolds 

2011b). 

 

The conclusions that can be drawn from these graphs are in some cases 

obvious. For example, that a more complex simulation scenario will take 

longer to run than a simpler scenario. There is no correlation between the 

number of simulated days done and execution time due to the stochastic 

nature of the simulator, while the differences are small. What may not be 

obvious at first is why execution seems to become faster with time (i.e. the 

curve is convex instead of concave). We believe there two element that 

contribute to this effect: i) the spatial model uses a sparse representation for 

grid cells which is expected to benefit longer simulated periods while shorter 

periods could be penalised due to grid cell instantiation overhead; ii) the 

simulation engine works on the Java Virtual Machine (JVM), which features a 

technology called HotSpot that provides adaptive optimisation by dynamically 

recompiling portions of a program, thus especially benefiting an algorithmic-

oriented and repetitive  program like in this case. 

 

The results indicates that the larger the resolutions the longer it will take for 

the simulation to complete, with Scenario 2 always taking longer than 

Scenario 1 at same spatial resolutions. 

 

Sparse Grid 

 
Subsections above described how the spatial aspect of the simulator is 

represented by a discrete grid, and offered details on the implementation of 

the model in question by using a sparse representation of cells in the grid. In 

order to evaluate whether this approach is useful, we performed several 

experiments. We included how many cells had to be created over 100 days 

when simulating both Scenario 1 and Scenario 2 at four different spatial 

resolutions (50 by 35 cells, 150 by 105 cells, 300 by 210 cells, and 450 by 

314 cells) and two different scenario sizes (normal size of 114.38 km by 79.71 

km and an area four times this size). 
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The conclusions that could be drawn from these results include the apparent 

benefit of this sparse grid for large simulation areas, whereas the benefit is 

modest for smaller areas. 

 

This type of outcome can be expected when we realise that the larger the 

simulation area, the more sparse its own features are. In this situation, a 

sparse representation of these features fits better their natural distribution. In 

contrast, the benefit is not so significant for smaller simulation areas. By 

observing the graphs of results, it seems that only short simulations of up to 

50 days area benefited, whereas longer simulations tend to use all the cells in 

the grid anyway. 

 

Memory 

 
This section offers a set of simulation results with respect to memory usage in 

the server hosting the simulator engine. We were interested about whether 

either the length of the simulated time period or the spatial resolution had any 

significant effect on server resources that could eventually affect the reliability 

of the service. This consideration is important as per the requirement of 

availability. 

 

(Garcia Adeva and Reynolds 2011b) provides a graphical view of how much 

memory (MB) remained available in the server after performing the simulation 

of both Scenario 1 and Scenario 2 over a period of 100 days for different 

spatial resolutions (50 by 35 cells, 150 by 105 cells, 300 by 210 cells, and 450 

by 314 cells). 

 

The main conclusion that we reached based on these experimental results is 

that it is difficult to control available memory due to the nature of the JVM 

where the simulation engine runs on. For example, there does not seem to be 

a direct relationship between spatial resolution and memory usage. Similarly, 

running the simulator for longer periods does not involve a trend towards 

growing memory requirements. This represents a fairly positive indication in 

order to achieve the requirement of scalability. However, there is a clear 

indication that the more complex and long the simulation is, the more active 

the JVM finds itself dealing with garbage collection (Dijkstra et al., 1978). In 

particular, the spatial resolution seems to produce the most impact in garbage 

collection activity. The obvious reason for this apparent relationship between 

garbage collection activity and length of simulation or spatial resolution is the 

huge number of memory objects being constantly created, especially by the 

spatial and dispersal models of the simulation engine. 

 

3.8. Verification and Validation 

With respect to validation in ecological simulation, the ideal method would 

consist of comparing results with the gold standard of high quality historical 

records. However, it is very rare to find such a comparison in the natural 

sciences (Sojda, 2007) and we will also not manage that high standard. This 

is probably due to this area of research often revolving around vague 

problems and suffering from uncertain and incomplete knowledge. We were 

able to locate a dataset from an outbreak of Bactrocera fruit fly that occurred 

in 1989 in Perth (Australia). The next subsection describes this event while 

the subsequent subsection provides details on an empirical comparison 

between the limited data that exists from the outbreak and the results of a 

simulated scenario using our simulator. 
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Outbreak Scenario 

 
The first incursion of Queensland fruit flies (Qfly) (i.e. B. tryoni), in Western 

Australia was in February 1989. It spread rapidly throughout Perth (Bateman, 

1989). The incursion was identified in tomato grown in the location of Dalkeith 

and collected on 16 February 1989, to emerge on 8 March 1989. Fruit fly 

numbers were highest in an area of 15 km2 surrounding the locations of 

Nedlands and Claremont. The initial infestation of B. tryoni was concentrated 

in an area of 15 km2 around the area Nedlands/Dalkeith, but after four 

months of trapping it covering an area 100 km2, where more than 200 B. 

tryoni flies had been trapped in the area (Sproul and Froudist, 1992; Yeates et 

al., 1992). 

 

An eradication program commenced in August 1989, by which time trapping 

revealed the extent of the infestation to be over 125 km2 of the Perth 

metropolitan area, increasing to 270 km2 by 10 December 1989 and to 300 

km2 by 23 February 1990. The eradication program used three stages of 

attack against this invasive pest. It incorporated a lure trapping system, 

insecticide baiting and release of sterile male fruit flies. Sterile fruit fly release 

started in January 1990 and continued until December of 1990 that year, after 

a successful eradication. 

 

A system of fruit surveillance started in September 1989 and continued to 

June 1990. The procedure put in place had the intention of detecting new 

invading propagules in the field before the adults mature (Sproul et al., 

1992). 

 

By the time of commencement of the eradication program, trapping and fruit 

monitoring showed that wild Qfly numbers and fruit infested was declining 

significantly. Very few were found inside the original infested area in 

December 1989 and January 1990. However, even after eradication 

commenced, infestations were found outside the original zone mainly to the 

north and east, but also to the south of Dalkeith. Qfly were found by August 

1989 infesting Innaloo and North Perth and in September spreading north-

east along the Swan River and north of the original infestation; there was also 

one found in the south at Spearwood. By the end of October 1989 the infested 

area had expanded to include Doubleview, Innaloo, and the Mt 

Hawthorn/North Perth and Bassendean/Bayswater regions. Infested areas in 

December 1989 included Gosnells, Beckenham, Lesmurdie, South Guildford, 

Coolbellup/Hilton, Nollamara, Dianella, Carine, Manning, Victoria Park, East 

Victoria Park, Carlisle and Lathlain and fruit flies were found in the outer-Perth 

suburbs of Greenmount, Midland and Karrinyup by January 1990. On the 26th 

of January a single male fly was collected in the town of Northam, 

approximately 100 km north east of Perth. Northam was declared infested and 

the eradication program was extended to this area. The main concentration of 

wild Qfly captures during February 1990 was between the Swan River and the 

Canning River east to the airport. Fruit flies were also found outside the 

known infested areas at Darlington and Armadale (Sproul et al., 1992; Yeates 

et al., 1992). 

 

The actual fruit fly detection in 1989 (Figure 4(a)) conforms to a latitude 

range from 31.9 to 32.1S and a longitude range from 115.7 to 115.9 E. 

Outermost examples included Wanneroo (27 km from Dalkeith), Karrinyup 

(12.4 km), Warwick (15.9 km), Mount Hawthorn (7.9 km), Bassendean (16 
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km), Midland (23.8 km), White Gum Valley (7 km), Beckenham (16 km), 

Victoria Park (10.5 km), Lesmurdie (23.1 km) and Pickering Brook (34.8 km). 

However the flies dispersed in clusters and sometimes chose an aggregation 

site and mating is facilitated. 
 

 
 
- 

Figure 4: Comparison of actual fruit fly detections in the 1989 Perth outbreak versus a 
simulated scenario. 

 

On 10 December 1989 the Perth area infested with Qfly had increased to 270 

km2 and by 23 February 1990 it expanded to 300 km2. By this time, trapping 

and fruit monitoring showed that wild Qfly numbers and fruit infested was 

declining significantly. Very few flies were found inside the original infested 

area between December 1989 and January 1990. 

 

Sterile fruit flies release started in January 1990 and continued until 

December that year hence ensuring a successful eradication. According to 

Sproul and Froudist (1992), fruit surveillance started in September 1989 and 

continued to June 1990. The procedure put in place had the intention of 

detecting new invading propagules in the field before the adults mature. The 

eradication program commenced in August 1989 and used three stages of 

attack against this invasive pest. They used a lure trapping system, insecticide 

baiting and release of sterile male fruit flies. B. tryoni was eradicated from the 

Perth Metropolitan area in 1990 using pheromone traps and sterile fruit y 

release (Sproul and Froudist, 1992; Fisher and Sproul,1984; Meats et al., 

2001). 

 

Qfly was eradicated from the Perth Metropolitan area in 1990 using 

pheromone traps and sterile fruit y release (Sproul and Froudist, 1992; Sproul 

et al., 1992, 2001). As a result of this incident, Western Australia spent $8 

million between 1989 and 1990. Since completion of the eradication program, 

a small number of Qfly have been trapped, leading to several separate 

incursions. Consequently, a small declared outbreak was announced in 1995 

(Sproul et al., 2001). 

 

Simulated Scenario 

 
Figure 4 provides a visual comparison of actual events described in the 

previous subsection along with the results of a simulated scenario. Figure 4(a) 
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contains the actual cases of fruit flies detections in traps around Perth during 

the period September - November 1989. The extent of the invasion of 

breeding populations of B. tryoni was revealed by trapping and fruit 

surveillance before the commencement of the eradication program. Figure 

4(b) corresponds to the simulation results obtained after trying to replicate 

the scenario at the time. 

 

The highest number of B. tryoni was in the area surrounding Dalkeith, 

covering an area of 15 km2. This was the original area of infestation, although 

later the expansion extended to 100, 125, 200 km2, and so forth. The 

expanded infestation area was determined by trapping until June 1990. The 

reports from the one year of monitoring program (Sproul et al., 1992; Yeates 

et al., 1992) show that the B. tryoni population had survived Perth's winter 

season. 

 

In a fruit survey, where fruit yielded maggots of B. tryoni in surrounding Perth 

metropolitan areas, infestations from north/western, north-eastern, 

south/western and south/eastern areas. The actual fruit fly detection in 1989 

(Figure 4(a)) compared with the simulated scenario (Figure 4(b)) shows a 

great similarity in the range of infested area, with latitude range from -31.9 to 

-32.1 and longitude range from 115.76 to 115.95. Outermost examples 

included Wanneroo (27 km from Dalkieth) Karrinyup (12.4 km), Warwick 

(15.9 km), Mount Hawthorn (7.9 km); Bassendean (16 km) Midland area 

(23.8 km), White Gum Valley (7 km), Beckenham (16 km), Victoria Park (10.5 

km), Lesmurdie (23.1 km), and Pickering Brook (34.8 km). 

 

In order to perform a realistic simulation, the following hypothetical situation 

was considered; we assumed that one fruit (e.g. loquat) was infested with 

fruit flies since around the incursion area one female and six males were 

caught in traps. This probably meant that a breeding population was in the 

area. Hence, the incursion was established at the first location where fruit flies 

were trapped (i.e. Crawley, west of the city centre and north of the river), 

with a population of zero eggs, one larva, zero pupae, and seven adults. We 

considered obstacles whose scores ranged from zero to one, where one is the 

value for the inhospitable ocean (100% mortality), river or mountain (50% 

mortality), or lake (30% mortality). 

 

Host seasonality and orchard area were also included where quantity of fruit 

trees in the area and number of fruit per tree were quantified. This included 

the suitability of the fruit and ripeness and how many days there are available 

(normally is considered days (e.g. 14); host suitability (e.g. excellent), 

ripeness (e.g. ripe); and second options is day (e.g. seven); host suitability 

(e.g. good), ripeness (e.g. over-ripe). The weather period is specified by the 

temperature and number of days, days (e.g. 70), temperature (e.g. 30_C); 

second option; day (e.g. 70), temperature (e.g. 20_C). The simulation area 

was 52.65 km by 27.72 km, with a grid of 100 by 53 cells, which 

corresponded to 1 km2 per cell. We ran the simulator for 170 to 210 days, in 

order to provide enough time for population growth, establishment and final 

dispersal. 

 

The simulation showed that the infested area surrounding Crawley increased 

and flies were spreading into north-western, north-eastern, south-western 

and south-eastern areas in a very similar way to that which happened in 

1989. Also, even when the weather period, specified by the temperature and 

period of days, was changed from 70 days, 30_C temperature to the second 

option of 70 days, 20_C temperature, or with an extra cold period added e.g. 

30 days and 18_C temperature, the dispersal gave a similar picture about how 
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B. tryoni would spread. 

 

These results tend to confirm what one would expect during an outbreak. The 

population parameters used relate to average climatic conditions prevailing 

during the normal infestation period. It should not be used outside the normal 

period of Q-y occurrence. In its native range overwintering adult flies become 

active in August, and by late summer to early autumn the flies are present in 

high populations (Ayling, 1989). Further calibration and verification would be 

needed, and possibly different modelling techniques. Fletcher (1973) has for 

instance indicated that B. tryoni has a tendency to congregate in well-wooded 

locations along creeks and rivers. Marked flies were also more frequently 

caught in traps in gardens and suburban areas than in non-cultivated areas 

the same distance from the orchard. The authors accept that a more 

sophisticated approach may be followed in another year or ten years, but will 

settle for going somewhere towards addressing some aspects now. 

 

In summary, we believe that the simulator offered a sensible answer to the 

question that had been posed prior to this incursion. We believe that it served 

its purpose in that the simulation should be able to provide spatial and time 

spread information in order to enable a rapid response to an incursion, 

specifically showing where it are would or could spread, how fast it would 

spread and the area of spread if the option is to do nothing. 
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4. Implications for stakeholders 

The main implication for stakeholders is that this project has successfully demonstrated a 

‘proof of concept’ of a fast, flexible, usable simulator to allow real-time prediction of the 

likely outcomes of real or hypothetical EPP outbreaks. This allows biosecurity emergency 

response managers to quickly get an idea of the likely speed and extent of an outbreak 

and to ‘play’ with alternative biosecurity responses. 

For developers of alternative, or follow-on EPP simulation software, the project 

demonstrates real-time simulation via a convenient web-based architecture. Calculations 

are done for any user with any computing device using the latest version of the simulation 

software on quick and powerful servers with access to local land-use data. 

The underlying models use the current best insect and disease models but are flexible in 

allowing parameters to be set by local experts. The software has been ‘personalised’ to 

several example EPPs and a match of prediction with historical outbreak data has been 

achieved. 

The main implication is that this pathway of robust, easily extensible general simulators, 

accessed via a web-server architecture is a very viable option for future development. 

5. Recommendations 

Recommendations based on this research fall into three categories: 1) potential users to 

take up opportunities opened up by the developments here; 2) suggestions for further 
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development of the tools and techniques here; and 3) more general lessons  for 

biosecurity. 

Under the first heading we have seen that the techniques in simulator development 

undertaken here have provided a proof of concept for a flexible, usable EPP spread 

prediction tool framework. Efforts should be made to explore ways of improving awareness 

of the availability of such tools amongst potential users. However, it must be emphasized 

that the products of this project are not quite ready to be used in the field as they are 

now. 

Thus, under the second heading, we can collect suggestions for polishing the tools for field 

use in the near future as well as a large number of specific improvements and extensions 

that we have already noted. Field trials of the tools during actual outbreaks are required as 

is the collection of more general feedback on new functionality and usability issues. 

Decisions about how to run the server and maintain the software and/or about 

commercialisation need to be made. 

Further development of the simulation technology include ‘personalising’ it to more pests. 

Other possibly desirable developments are to adapt it properly for running on mobile 

phones and tablets, to better support a ‘war game’ type of simulation where parameters 

can be changed at intermediate stages, more robust import of needed land-use and 

weather data from known internet sources, and extensions to cover Asian neighbour 

countries. 

Under the final category we include a recommendation for further research into data for 

validation or verification of simulators. Details of trap data over time, as well as detailed 

accounts of land use, weather patterns, human activity during outbreaks need to be 

collected and made available in a publicly usable way. Our validation activities were 

certainly hampered by the sketchiness of such data. 

6. Abbreviations/glossary 

ABBREVIATION FULL TITLE 

CRCNPB Cooperative Research Centre for National Plant 

Biosecurity 

EPP Emergency plant pest  

UWA The University of Western Australia 

DAFWA WA State Government Department of Agriculture and 

Fisheries 

CSSE School of Computer Science and Software Engineering 

(at UWA) 

Qfly Queensland fruit fly 

JVM Java Virtual Machine (runs Java programs) 

7. Plain English website summary 

 

CRC project no: CRC10073 
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Project title: Surveillance Simulation Platform 

Project leader: Professor Mark Reynolds 

Project team: UWA CSSE: 

Mark Reynolds,  

Juan Jose Garcia Adeva,  

 

DAFWA: 

Darryl Hardie,  

John Botha,  

Maria Majer 

Research outcomes: ▪ A surveillance prediction simulation platform for 

validating surveillance strategies; 

▪ novel landscape-level modelling techniques for pest 

spread simulation; and 

▪ validated simulation technology using historical 

emergency plant pest incursion data. 

 

Research implications: This pathway of robust, easily extensible general EPP 

simulators, accessed via a web-server architecture is a very 

viable option for future development, commercialisation 

and/or roll-out. 

Research publications: 
Press 

▪ Simulator will aid in pest defence. Good Fruit & Vegetables, 

November, 2010. 

▪  Pest scenarios test responses 

▪ Simulator to aid protection from exotic plant pests 

▪ Spreading the collaboration 

▪ From storage to export: learning about the grain supply 

chain 

Conferences 

▪ 'Awareness of the Asian Gypsy Moth: a Threat to Australia's 

Eucalyptus Plantations and a Concern for Restoration 

Programs', SERI World conference on Ecological 

Restoration, Perth, 2009. 

▪ 'Modelling establishment and spread potential of Bactrocera 

fruit flies: Australian concerns for a surveillance 

program', Australian Entomological Society, Darwin, 

2009. 

▪ 'Development of a Surveillance Simulation Platform for 

establishment and spread of EPPs: examining 

Australian concerns', Australian Entomological 

https://bug.csse.uwa.edu.au/images/e/e4/Good_Fruit_and_Vegetables.pdf
https://bug.csse.uwa.edu.au/images/8/82/Pest_outbreak_scenarios_test_responses.pdf
http://www.agric.wa.gov.au/PC_94228.html
http://www.crcplantbiosecurity.com.au/content/spreading-collaboration
http://www.crcplantbiosecurity.com.au/content/storage-export-learning-about-grain-supply-chain
http://www.crcplantbiosecurity.com.au/content/storage-export-learning-about-grain-supply-chain
https://bug.csse.uwa.edu.au/images/f/fd/SERI_Abstract.pdf
https://bug.csse.uwa.edu.au/images/f/fd/SERI_Abstract.pdf
https://bug.csse.uwa.edu.au/images/f/fd/SERI_Abstract.pdf
https://bug.csse.uwa.edu.au/images/a/a7/Bactrocera_abstract_2009.pdf
https://bug.csse.uwa.edu.au/images/a/a7/Bactrocera_abstract_2009.pdf
https://bug.csse.uwa.edu.au/images/a/a7/Bactrocera_abstract_2009.pdf
https://bug.csse.uwa.edu.au/images/9/97/EPPs_abstract_2009.pdf
https://bug.csse.uwa.edu.au/images/9/97/EPPs_abstract_2009.pdf
https://bug.csse.uwa.edu.au/images/9/97/EPPs_abstract_2009.pdf
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Society, Darwin, 2009. 

▪ 'Modelling the establishment and spread of emergency 

plant pests (EPPs) in Australia: simulate or suffer', 

Global Biosecurity, Brisbane, 2010. 

▪ 'Modelling the spread of fire blight', Global Biosecurity, 

Brisbane, 2010. 

▪ 'Simulation technology to predict the establishment and 

spread of Asian gypsy moth, Lymantria dispar 

asiatica', Australian Entomological Society, Perth, 

2010. 

▪ 'Simulation of Honeybee Nectar Foraging for Determining 

Effects on Local Flora', Modelling and Simulation 

Society of Australia and New Zealand, Perth, 2011. 

Journals 

▪ 'Modelling establishment and spread potential of 

Trogoderma granarium Everts: Australian concerns for 

a surveillance program', Resistant Pest Management 

Newsletter, Vol. 18, No. 2, pp. 4 - 6, Spring 2009. 

▪ 'A Simulation Modelling Approach to Forecast Establishment 

and Spread of Bactrocera Fruit Flies', Ecological 

Modelling, accepted 2011 in press. 

 

RECENT SUBMISSIONS under REVIEW 

   
 Threat of Asian gypsy moth, Lymantria dispar (L.) 

(asiatica and japonica) to Australia: Motivation for 
developing simulation technology. (Being updated for 
resubmission, Dec 2011) 

 
 Web-based Simulation of Fruit Fly to Support 

Biosecurity Decision-Making. (Submitted to Ecological 
Informatics June 2011) 

 
 Simulation Modelling of Nectar and Pollen Foraging by 

Honeybees. (Submitted to Biosystems Engineering 

September 2011) 
 

 Web-based Simulation of Nectar and Pollen Foraging 
by Honeybees. (To be submitted to Decision Support 
Systems, Dec 2011) 
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